Question

In: Advanced Math

Prove 1. Let f : A→ B and g : B → C . If g...

Prove

1. Let f : A→ B and g : B → C . If g 。 f is one-to-one, then f is one-to-one.

2. Equivalence of sets is an equivalence relation (you may use other theorems without stating them for this one).

Solutions

Expert Solution


Related Solutions

4. Let a < b and f be monotone on [a, b]. Prove that f is...
4. Let a < b and f be monotone on [a, b]. Prove that f is Riemann integrable on [a, b].
Let F and G~be two vector fields in R2 . Prove that if F~ and G~...
Let F and G~be two vector fields in R2 . Prove that if F~ and G~ are both conservative, then F~ +G~ is also conservative. Note: Give a mathematical proof, not just an example.
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2....
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2. Prove that if 2p−1 is prime, then p must also be prime. (Abstract Algebra)
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
Let A, B be sets and f : A → B and g : B →...
Let A, B be sets and f : A → B and g : B → C . Characterize when g ◦ f : A → C is a bijection.
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions,...
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions, show that g∘f is one-to-one. (B) If g∘f is onto, show that g is onto. (C) If g∘f is one-to-one, show that f is one-to-one. (D) If g∘f is one-to-one and f is onto, show that g is one-to-one. (E) If g∘f is onto and g is one-to-one, show that f is onto. (Abstract Algebra)
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is...
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is continuous on [a, b]
(a) (f ∘ g)(3) (b) g(f(2)) (c) g(f(5)) (d) (f ∘ g)(−3) (e) (g ∘ f)(−1) (f) f(g(−1))
(a)    (f ∘ g)(3) (b)    g(f(2)) (c)    g(f(5)) (d)    (f ∘ g)(−3) (e)    (g ∘ f)(−1) (f)    f(g(−1))  
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove...
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove that xa+b = xaxb b) prove that (xa)-1 = x-a c) establish part a) for arbitrary integers a and b in Z (positive, negative or zero)
1. ¬B∨(G↔J), H→(B&C) ∴(H&J)→G 2. A∨B, C↔¬(B∨D) ∴C→A 3. (A&B) ↔ (F→G), (A&F) & B∴(G→R)→R 4....
1. ¬B∨(G↔J), H→(B&C) ∴(H&J)→G 2. A∨B, C↔¬(B∨D) ∴C→A 3. (A&B) ↔ (F→G), (A&F) & B∴(G→R)→R 4. T→¬B, T→¬D ∴ T→¬(B∨D) 5. ¬(M∨¬S), S→(R→M) ∴A → (¬R∨T) 6. (F&G) → I, (I∨J) → K ∴F→(G→K) 7. ¬U, O→G, ¬(O∨G) →U ∴G Prove that the arguments are valid by constructing a dedication using the rules MP, MT, DN, Conj, Simp, CS, Disj, DS, DM, CP, HS, BE, and DL. Use CP if needed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT