Question

In: Advanced Math

9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is...

9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is continuous on [a, b]

Solutions

Expert Solution


Related Solutions

a) State the definition that a function f(x) is continuous at x = a. b) Let...
a) State the definition that a function f(x) is continuous at x = a. b) Let f(x) = ax^2 + b if 0 < x ≤ 2 18/x+1 if x > 2 If f(1) = 3, determine the values of a and b for which f(x) is continuous for all x > 0.
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let (X,dX),(Y,dY ) be metric spaces and f: X → Y be a continuous bijection. Prove...
Let (X,dX),(Y,dY ) be metric spaces and f: X → Y be a continuous bijection. Prove that if (X, dX ) is compact, then f is a homeomorphism. (Hint: it might be convenient to use that a function is continuous if and only if the inverse image of every open set is open, if and only if the inverse image of every closed set is closed).
a) use the sequential definition of continuity to prove that f(x)=|x| is continuous. b) theorem 17.3...
a) use the sequential definition of continuity to prove that f(x)=|x| is continuous. b) theorem 17.3 states that if f is continuous at x0, then |f| is continuous at x0. is the converse true? if so, prove it. if not find a counterexample. hint: use counterexample
4. Let a < b and f be monotone on [a, b]. Prove that f is...
4. Let a < b and f be monotone on [a, b]. Prove that f is Riemann integrable on [a, b].
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
uniformly convergent, Analysis how sup(fn(x)-f(x)) and fn(x)-f(x) I don't understand how to transform from sup(fn(x)-f(x)) to...
uniformly convergent, Analysis how sup(fn(x)-f(x)) and fn(x)-f(x) I don't understand how to transform from sup(fn(x)-f(x)) to fn(x)-f(x) to represent uniformly convergent Also, please kindly draw the picture to explain sup(fn(x)-f(x)) sup=supremum
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and...
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and such that f(a)=f(b). Then there exists at least one point c on (a,b) such that f'(c)=0." Rolle's Theorem requires three conditions be satisified. (a) What are these three conditions? (b) Find three functions that satisfy exactly two of these three conditions, but for which the conclusion of Rolle's theorem does not follow, i.e., there is no point c in (a,b) such that f'(c)=0. Each...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT