In: Finance
A loan is to be repaid over 30 years, with month-end repayments of 8,000. If the interest rate is 4.9% p.a. compounded monthly. Calculate the loan outstanding balance at the end of 10 years. Correct your answer to the nearest cent without any units. (Do not use "$" or "," in your answer. e.g. 12345.67)
Loan = EMI * PVAF (r%, n)
= $ 8000 * PVAF ( 0.4083%, 360 )
= $ 8000 * 188.4209
= USD 1,507,367.10 |
Loan Amortization:
Month | Opening Bal | EMI | Int | Principal Repay | Closing Balance |
115 | $ 12,40,207.33 | $ 8,000.00 | $ 5,064.18 | $ 2,935.82 | $ 12,37,271.51 |
116 | $ 12,37,271.51 | $ 8,000.00 | $ 5,052.19 | $ 2,947.81 | $ 12,34,323.70 |
117 | $ 12,34,323.70 | $ 8,000.00 | $ 5,040.16 | $ 2,959.84 | $ 12,31,363.85 |
118 | $ 12,31,363.85 | $ 8,000.00 | $ 5,028.07 | $ 2,971.93 | $ 12,28,391.92 |
119 | $ 12,28,391.92 | $ 8,000.00 | $ 5,015.93 | $ 2,984.07 | $ 12,25,407.86 |
120 | $ 12,25,407.86 | $ 8,000.00 | $ 5,003.75 | $ 2,996.25 | $ 12,22,411.60 |
121 | $ 12,22,411.60 | $ 8,000.00 | $ 4,991.51 | $ 3,008.49 | $ 12,19,403.12 |
122 | $ 12,19,403.12 | $ 8,000.00 | $ 4,979.23 | $ 3,020.77 | $ 12,16,382.35 |
123 | $ 12,16,382.35 | $ 8,000.00 | $ 4,966.89 | $ 3,033.11 | $ 12,13,349.24 |
OPening Bal = Prev month closing balance
EMI - Given
Int = Opening Balance * 4.9% /12
Principal Repay = EMI - Int
Closing Bal = Opening bal - Principal repay