In: Finance
A loan is to be repaid over 30 years, with month-end repayments of 3,000. If the interest rate is 6.5% p.a. compounded monthly. Calculate the principal paid for year 10. Correct your answer to the nearest cent without any units. (Do not use "$" or "," in your answer. e.g. 12345.67)
EMI = Loan Amount / PVAF (r%, n)
PVAF = Sum [ PVF (r%, n) ]
PVF (r%, n) = 1 / ( 1 + r)^n
EMI = Loan Amount / PVAF (r%, n)
3000 = Loan AMount / PVAF(0.5417%,360)
Loan Amount = 3000 * PVAF ( 0.5417% , 360)
= $ 3000 * 158.2108
= $ 474,632.46
Loan Amortization Schedule:
| Month | Opening Balance | EMI | Int | Principal Repay | Closing Balance |
| 102 | $ 4,17,150.61 | $ 3,000.00 | $ 2,259.57 | $ 740.43 | $ 4,16,410.17 |
| 103 | $ 4,16,410.17 | $ 3,000.00 | $ 2,255.56 | $ 744.44 | $ 4,15,665.73 |
| 104 | $ 4,15,665.73 | $ 3,000.00 | $ 2,251.52 | $ 748.48 | $ 4,14,917.25 |
| 105 | $ 4,14,917.25 | $ 3,000.00 | $ 2,247.47 | $ 752.53 | $ 4,14,164.72 |
| 106 | $ 4,14,164.72 | $ 3,000.00 | $ 2,243.39 | $ 756.61 | $ 4,13,408.11 |
| 107 | $ 4,13,408.11 | $ 3,000.00 | $ 2,239.29 | $ 760.71 | $ 4,12,647.40 |
| 108 | $ 4,12,647.40 | $ 3,000.00 | $ 2,235.17 | $ 764.83 | $ 4,11,882.58 |
| 109 | $ 4,11,882.58 | $ 3,000.00 | $ 2,231.03 | $ 768.97 | $ 4,11,113.61 |
| 110 | $ 4,11,113.61 | $ 3,000.00 | $ 2,226.87 | $ 773.13 | $ 4,10,340.47 |
| 111 | $ 4,10,340.47 | $ 3,000.00 | $ 2,222.68 | $ 777.32 | $ 4,09,563.15 |
| 112 | $ 4,09,563.15 | $ 3,000.00 | $ 2,218.47 | $ 781.53 | $ 4,08,781.62 |
| 113 | $ 4,08,781.62 | $ 3,000.00 | $ 2,214.23 | $ 785.77 | $ 4,07,995.85 |
| 114 | $ 4,07,995.85 | $ 3,000.00 | $ 2,209.98 | $ 790.02 | $ 4,07,205.83 |
| 115 | $ 4,07,205.83 | $ 3,000.00 | $ 2,205.70 | $ 794.30 | $ 4,06,411.53 |
| 116 | $ 4,06,411.53 | $ 3,000.00 | $ 2,201.40 | $ 798.60 | $ 4,05,612.92 |
| 117 | $ 4,05,612.92 | $ 3,000.00 | $ 2,197.07 | $ 802.93 | $ 4,04,809.99 |
| 118 | $ 4,04,809.99 | $ 3,000.00 | $ 2,192.72 | $ 807.28 | $ 4,04,002.71 |
| 119 | $ 4,04,002.71 | $ 3,000.00 | $ 2,188.35 | $ 811.65 | $ 4,03,191.06 |
| 120 | $ 4,03,191.06 | $ 3,000.00 | $ 2,183.95 | $ 816.05 | $ 4,02,375.01 |
| 121 | $ 4,02,375.01 | $ 3,000.00 | $ 2,179.53 | $ 820.47 | $ 4,01,554.54 |
| 122 | $ 4,01,554.54 | $ 3,000.00 | $ 2,175.09 | $ 824.91 | $ 4,00,729.63 |
| 123 | $ 4,00,729.63 | $ 3,000.00 | $ 2,170.62 | $ 829.38 | $ 3,99,900.25 |
| 124 | $ 3,99,900.25 | $ 3,000.00 | $ 2,166.13 | $ 833.87 | $ 3,99,066.38 |
| 125 | $ 3,99,066.38 | $ 3,000.00 | $ 2,161.61 | $ 838.39 | $ 3,98,227.99 |
| 126 | $ 3,98,227.99 | $ 3,000.00 | $ 2,157.07 | $ 842.93 | $ 3,97,385.05 |
Principal paid in Year 10 = Principal apportion from 109 to 120 Months
I.e $ 9507.56