# Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it...

Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it analytically. (b) Solve it using Euler’s method using step size h = 0.1 and ﬁnd an approximation to true solution at x = 0.3. (c) What is the error in the Euler’s method at x = 0.3

## Solutions

##### Expert Solution   ## Related Solutions

##### Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3...
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3 y' being the first derivative of y(x), y'' being the second derivative, etc.
##### Solve the following initial value problem using Laplace transforms: y000 + y0 = et, y(0) =...
Solve the following initial value problem using Laplace transforms: y000 + y0 = et, y(0) = y0(0) = y00(0) = 0.
##### Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
##### Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
##### Consider the initial value problem y′ = 18x − 3y, y(0) = 2 (a) Solve it...
Consider the initial value problem y′ = 18x − 3y, y(0) = 2 (a) Solve it as a linear 1st order ODE with the method of the integrating factor. (b) Solve it using a substitution method. (c) Solve it using the Laplace transform.
##### Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
##### Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
##### Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
##### (3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value...
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value problem y′′ − 2√2y′ + 2y = 0, y(√2) = e2, y′(√2) = 2√2e2. Consider the second order linear equation t2y′′+2ty′−2y=0, t>0. (a) (1 pt) Show that y1(t) = t−2 is a solution. (b) (3 pt) Use the variation of parameters method to obtain a second solution and a general solution.
##### Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0)...
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0) = 0, y''(0) = 0.