1)Find the general solution of the given second-order
differential equation.
y'' − 7y' + 6y = 0
2)Solve the given differential equation by undetermined
coefficients.
y'' + 4y = 6 sin(2x)
6) a) Find the general solution to the 2nd order
differential equation
y''+6y'+8y=0
[8 pts]
b) Find the general solution to
y''+6y'+8y=2e-x.
Use the method of undetermined coefficients. [8
pts]
c) Solve the IVP
y''+6y'+8y=2e-x,
y0=0,
y'0=0
[5 pts]
A) Find the general solution of the given differential equation.
y'' + 8y' + 16y = t−2e−4t, t > 0
B) Find the general solution of the given differential equation.
y'' − 2y' + y = 9et / (1 + t2)
Find the general solution to the differential equation below.
y′′ − 6y′ + 9y = 24t−5e3
Calculate the inverse Laplace transform of ((3s-2)
e^(-5s))/(s^2+4s+53)
Calculate the Laplace transform of y = cosh(at) using the
integral definition of the Laplace transform. Be sure to note any
restrictionson the domain of s. Recall that cosh(t)
=(e^t+e^(-t))/2
Using method of variation of parameters, solve the differential
equation: y''+y'=e^(2x)
Find the general solution, and particular solution using this
method.