Question

In: Chemistry

Q1)Determine the equilibrium constant for the following reaction at 498 K. 2 Hg(g) + O2(g) →...

Q1)Determine the equilibrium constant for the following reaction at 498 K.
2 Hg(g) + O2(g) → 2 HgO(s) ΔH° = -304.2 kJ; ΔS° = -414.2 J/K

a)1.87 × 1010
b)2.31 × 10-22
c)4.33 × 1021
d)8.10 × 1031
e)5.34 × 10-11

Q2) Determine the equilibrium constant for the following reaction at 655 K.

HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K

a)2.51 × 10-13
b)3.99 × 1012
c)3.26 × 10-12
d)13.0
e)3.07 × 1011

Solutions

Expert Solution

1.2Hg + O2 ---> 2HgO

Again we know,

and    , Keq=equillibrium constant

so,

R = 8.314 J/K/mol

T = 498K

- 8.314 X 498 ln Keq = (-304.2 X1000) - ( 498 X -414.2)

or, Keq = 1.87 X 1010

so the equillibrium constant is (a) 1.87 X 1010

2. HCN + 2H2 --> CH3NH2

similarly like the previous answer,

or, -8.314 X 655 ln Keq = (-158 X 1000) - (655 X -219.9)

or, Keq = 12.994 = 13

so the equillibrium constant is (d)13.0


Related Solutions

Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K. Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K A. 3.07 × 1011 B.13.0 C. 3.26 × 10-12 D. 3.99 × 1012 E. 2.51 × 10-13
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) ?...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) ? CH3NH2(g); ?H
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 655 K. HCN(g) + 2 H2(g) → CH3NH2(g) ΔH° = -158 kJ; ΔS°= -219.9 J/K
Determine the equilibrium constant for the following reaction at 549 K. CH2O(g) + 2 H2(g) →...
Determine the equilibrium constant for the following reaction at 549 K. CH2O(g) + 2 H2(g) → CH4(g) + H2O(g) ΔH° = -94.9 kJ; ΔS°= -224.2 J/K.
1. Determine the equilibrium constant for the following reaction at (3.950x10^2) K. 2 A(g) + B2(g)...
1. Determine the equilibrium constant for the following reaction at (3.950x10^2) K. 2 A(g) + B2(g) → 2 AB(s)     ΔH° = -(2.2x10^2) kJ; ΔS° = -(3.988x10^2) J/K 2. A+ (aq) + BC3- (aq) à A(BC3)(s) ΔH° f = -64.4 kJ/mol For the above reaction ΔSsys is ________(positive or negative), and ΔG is __________ (positive or negative) and the reaction is _______________ (spontaneous or nonspontaneous) at 600K   3. Which of the following pairs of reactants will result in a spontaneous reaction...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K = 1.7 × 10-3. Suppose that 0.0150 mol NO(g), 0.250 mol N2(g), and 0.250 mol O2(g) are placed into a 10.0-L flask and heated to 2300 K. The system is not at equilibrium. Determine the direction the reaction must proceed to reach equilibrium and the final equilibrium concentrations of each species. to the right to the left [N2] =____ mol/L [O2] = ____mol/L [NO]...
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2...
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2 NO(g) Calculate the concentrations of all species at equilibrium for each of the following cases. (a) 1.6 g N2 and 3.0 g O2 are mixed in a 1.3-L flask. (b) 2.0 mol pure NO is placed in a 2.1-L flask.
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.315 M COCl2, 6.38×10-2 M CO and 6.38×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.31×10-2 mol of Cl2(g) is added to the flask? [COCl2] =____ M [CO] =____ M [Cl2] = ____M
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.294 M COCl2, 6.16×10-2 M CO and 6.16×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 4.50×10-2 mol of CO(g) is added to the flask? [COCl2] = M [CO] = M [Cl2] = M
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI, 4.32×10-2 M H2 and 4.32×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.12×10-2 mol of I2(g) is added to the flask? [HI] = M [H2] = M [I2] = M
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT