In: Statistics and Probability
Altitude of origin X (m) |
Respiration rate Y (µl/hr x mg) |
XY | X2 | Y2 |
90 | 0.11 | 9.9 | 8100 | 0.0121 |
230 | 0.20 | 46.0 | 52900 | 0.0400 |
240 | 0.13 | 31.2 | 57600 | 0.0169 |
260 | 0.15 | 39.0 | 67600 | 0.0225 |
330 | 0.18 | 59.4 | 108900 | 0.0324 |
400 | 0.16 | 64.0 | 160000 | 0.0256 |
410 | 0.23 | 94.3 | 168100 | 0.0529 |
550 | 0.18 | 99.0 | 302500 | 0.0324 |
590 | 0.23 | 135.7 | 348100 | 0.0529 |
610 | 0.26 | 158.6 | 372100 | 0.0676 |
700 | 0.32 | 224.0 | 490000 | 0.1024 |
790 | 0.37 | 292.3 | 624100 | 0.1369 |
Sum:5200 | 2.52 | 1253.4 | 2760000 | 0.5946 |
a. make a scatter plot of the data
b. Compute the correlation coefficient
c. Calculate the least-squares regression line of Y on X ( Yhat = a + bx )
d. Predict the respiration rate at altitude of origin, 720.
a.) The scatterplot is plotted below:
b.) To determine correlation coefficient.
We know that, correlation coefficient is given by :
Substituting given values, we get,
Hence, correlation coefficient is 0.13744
c) Least square regression line of Y on X is given as,
where a and b are given by,
Altitude of origin X | Respiration rate Y | XY | X2 | Y2 | Xi-X̅ | (Xi-X̅)^2 | (Yi-Y̅) | (Xi-X̅)(Yi-Y̅) |
90 | 0.11 | 9.9 | 8100 | 0.0121 | -343.333 | 117877.8 | -0.1 | 34.33333333 |
230 | 0.2 | 46 | 52900 | 0.04 | -203.333 | 41344.44 | -0.01 | 2.033333333 |
240 | 0.13 | 31.2 | 57600 | 0.0169 | -193.333 | 37377.78 | -0.08 | 15.46666667 |
260 | 0.15 | 39 | 67600 | 0.0225 | -173.333 | 30044.44 | -0.06 | 10.4 |
330 | 0.18 | 59.4 | 108900 | 0.0324 | -103.333 | 10677.78 | -0.03 | 3.1 |
400 | 0.16 | 64 | 160000 | 0.0256 | -33.3333 | 1111.111 | -0.05 | 1.666666667 |
410 | 0.23 | 94.3 | 168100 | 0.0529 | -23.3333 | 544.4444 | 0.02 | -0.466666667 |
550 | 0.18 | 99 | 302500 | 0.0324 | 116.6667 | 13611.11 | -0.03 | -3.5 |
590 | 0.23 | 135.7 | 348100 | 0.0529 | 156.6667 | 24544.44 | 0.02 | 3.133333333 |
610 | 0.26 | 158.6 | 372100 | 0.0676 | 176.6667 | 31211.11 | 0.05 | 8.833333333 |
700 | 0.32 | 224 | 490000 | 0.1024 | 266.6667 | 71111.11 | 0.11 | 29.33333333 |
790 | 0.37 | 292.3 | 624100 | 0.1369 | 356.6667 | 127211.1 | 0.16 | 57.06666667 |
5200 | 2.52 | 1253.4 | 2760000 | 0.5946 | 506666.7 | 161.4 |
X̅= | 433.3333 |
Y̅= | 0.21 |
Therefore, substituting values from above table, we get,
Now substituting value of b in a,
Hence, Least square regression line of Y on X is
d)
Now, to predict the respiration rate at altitude of origin, 720. i.e., To predict Y given X=720
Using the least square regression line euation computed in (c), we get,
Therefore, the respiration rate at altitude of origin 720 µl/hrxmg is 0.30128 m.