Question

In: Advanced Math

Linear programming. Solve the following two (2) Linear programming problems (#1 and #2) and then answer...

Linear programming.

Solve the following two (2) Linear programming problems (#1 and #2) and then answer question 3:

1.. Solve the following LP problem graphically:

Maximize profit =            X + 10Y

Subject to:                        4X + 3Y < /= 36
                                           2X +4Y < / = 40
                                           Y > / = 3
                                           X, Y > / = 0

2. Considering the following LP problem and answer the questions, Part a and Part b:

Maximize profit =            30X1 + 10X2

Subject to:                        3X1 + X2 < /= 300
                                           X1 +X2 < / = 200
                                           X1 < / = 100
                                           X2 > / = 50
                                           X1 – X2 < / = 0
                                           X1, X2 > / = 0

a. Solve graphically
b. Is there more than one optimal solution? Explain

3. How many feasible solutions are there in a LP program/problem? Which ones do we need to examine to find the optimal solution?

Solutions

Expert Solution


Related Solutions

Maximization by the simplex method Solve the following linear programming problems using the simplex method. 1>....
Maximization by the simplex method Solve the following linear programming problems using the simplex method. 1>. Maximize z = x1 + 2x2 + 3x3 subject to x1 + x2 + x3 ≤ 12 2x1 + x2 + 3x3 ≤ 18 x1, x2, x3 ≥ 0 2>. A farmer has 100 acres of land on which she plans to grow wheat and corn. Each acre of wheat requires 4 hours of labor and $20 of capital, and each acre of corn...
SOLVE THE FOLLOWING 2 LINEAR PROGRAMMING PROBLEMS USING EXCEL AND THE SOLVER ADD-IN. PLEASE SHOW ME...
SOLVE THE FOLLOWING 2 LINEAR PROGRAMMING PROBLEMS USING EXCEL AND THE SOLVER ADD-IN. PLEASE SHOW ME ALL THE EXCEL STEPS. PROBLEM #1:   Maximize Z = $60X + $90Y                             Subject to:   60X + 30Y >= 1,500                                                     100X + 100Y <= 6,000                                                                              Y >= 30                                                                           X, Y >= 0 PROBLEM #2: Minimize Z = $3,000X + $1,000Y                              Subject to:   60X + 20Y >= 1,200                                                         10X + 10Y >= 400                                                     ...
Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps,...
Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. An investor has up to N$450,000 to invest in three types of investments. Type A pays 6% annually and has a risk factor of 0. Type B pays 10% annually and has a risk factor of 0.06. Type C pays 12% annually and has a risk factor of...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. 2.2.1 An electronics manufacturing company has three production plants, each of which produces three different...
Solve for the following Linear Programming problems. Your solutions should include: Objective Function Constraints Graph complete...
Solve for the following Linear Programming problems. Your solutions should include: Objective Function Constraints Graph complete with labels of points and lines, and shaded feasible region Corner point approach Optimal solution Maximum profit Problem 1: In 1969, the two leading dietary drinks available in the market are Bandade and Firstade. These drinks supply protein and carbohydrates lost during physical activity. Bandade provides 1 unit of protein and 3 units of carbohydrates in each liter. Firstade supplies 2 units of protein...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 −...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 − 2?2 s.t. −2?1 + 7?2 ≤ 6 −3?1 + ?2 ≤ −1 9?1 − 4?2 ≤ 6 ?1 − ?2 ≤ 1 7?1 − 3?2 ≤ 6 −5?1 + 2?2 ≤ −3 ?1,?2 ≥ 0
Consider the following transportation problem. Formulate this problem as a linear programming model and solve it...
Consider the following transportation problem. Formulate this problem as a linear programming model and solve it using the MS Excel Solver tool. Shipment Costs ($), Supply, and Demand: Destinations Sources 1 2 3 Supply A 6 9 100 130 B 12 3 5 70 C 4 8 11 100 Demand 80 110 60 (4 points) Volume Shipped from Source A __________ (4 points) Volume Shipped from Source B __________ (4 points) Volume Shipped from Source C __________ (3 points) Minimum...
Problem 1: For the following linear programming problem: ???????? ? = 40?1 + 50?2 Subject to...
Problem 1: For the following linear programming problem: ???????? ? = 40?1 + 50?2 Subject to constraints: 3?1 − 6?2 ≥ 30 ?1 – 15 ≤ 3?2 2 ?1 + 3 ?2 = 24 ?1, ?2 ≥ 0 1- Find the optimal solution using graphical solution corner points method or iso profit line method. Please, show the values for state variable, decisions variables, and slack and surplus variables 2- Determine the value for basic solution and non-basic solution, binding constraints...
Formulate but do not solve the following exercise as a linear programming problem. Kane Manufacturing has...
Formulate but do not solve the following exercise as a linear programming problem. Kane Manufacturing has a division that produces two models of fireplace grates, x units of model A and y units of model B. To produce each model A requires 2 lb of cast iron and 8 min of labor. To produce each model B grate requires 5 lb of cast iron and 5 min of labor. The profit for each model A grate is $2.50, and the...
Solve the following linear programming problem by the graphical method. Maximize Z = 400 X1 +...
Solve the following linear programming problem by the graphical method. Maximize Z = 400 X1 + 200 x 2 Subject to : X1 + 8X2 <= 24 X1 + 2X2 <= 12 X1 >= 0 , X2 >= 0 You will need to graph each of the constraints to answer the following questions. You can draw a rough graph. a) State the coordinates of the point where the constraints interact. b) Define in words the region of feasible solutions. c)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT