Question

In: Math

Fundamental Theorem of Line Integrals Consider the line integral: ∮_C▒〈6xy+6x, 3x^2-3 cos⁡(y) 〉 ∙dr ⃗ where...

Fundamental Theorem of Line Integrals Consider the line integral: ∮_C▒〈6xy+6x, 3x^2-3 cos⁡(y) 〉 ∙dr ⃗ where C is the line segment from the origin to (4, 5). Evaluate this integral by rewriting the integral as a standard single variable integral of the parameter t. Without finding a potential function show that the integrand is a gradient field. Find a potential function for the vector field. Use the Fundamental Theorem of Line Integrals to evaluate this integral.

Solutions

Expert Solution

C is the line segment from the origin to (4, 5)

r(t)=〈4t,5t〉 ,0≤t≤1
=>r'(t)=〈4,5〉

F=〈6xy+6x, 3x2-3cos⁡(y)〉
=>F(r(t))=〈6(4t)(5t)+6(4t), 3(4t)2-3cos⁡(5t)〉
=>F(r(t))=〈120t2+24t, 48t2-3cos⁡(5t)〉

∮_C▒〈6xy+6x, 3x^2-3 cos⁡(y) 〉 ∙dr ⃗
=01F(r(t)) .r'(t) dt
=01〈120t2+24t, 48t2-3cos⁡(5t)〉.〈4,5〉 dt
=01[(120t2+24t)(4)+(48t2-3cos⁡(5t))(5)] dt
=01[480t2+96t+240t2-15cos⁡(5t)] dt
=01[720t2+96t-15cos⁡(5t)] dt
=[240t3+48t2-3sin⁡(5t)]  0|1
=[240(1)3+48(1)2-3sin⁡(5*1)]-[240(0)3+48(0)2-3sin⁡(5*0)]
=[240+48-3sin⁡(5)]-[0+0-3sin⁡(0)]
=288-3sin⁡(5)

-----------------------------------------------------------------------------------------

fx=6xy+6x, fy=3x2-3cos⁡(y)

f=∫fx dx
=>f=∫(6xy+6x) ​​​​​dx
=>f=3x2y+3x2+g(y) ​​​
=>fy=3x2+0+g'(y) ​
=>fy=3x2+g'(y) ​

3x2+g'(y) ​=3x2-3cos⁡(y)
=>g'(y) ​=-3cos⁡(y)
=>g(y) ​=∫-3cos⁡(y) dy
=>g(y) ​=-3sin⁡(y) +c

potential function f(x,y)=3x2y+3x2-3sin⁡(y) +c

Using the Fundamental Theorem of Line Integrals

∮_C▒〈6xy+6x, 3x^2-3 cos⁡(y) 〉 ∙dr ⃗

=f(4,5)-f(0,0)
=[3(4)2(5)+3(4)2-3sin⁡(5) +c]-[3(0)2(0)+3(0)2-3sin⁡(0) +c]
=[240+48-3sin⁡(5) +c]-[0+0-0 +c]
=288-3sin⁡(5)


Related Solutions

Problem 1: Use Green's Theorem to evaluate the vector line integral ∫C [?3??−?3] ?? where ?...
Problem 1: Use Green's Theorem to evaluate the vector line integral ∫C [?3??−?3] ?? where ? is the circle ?2+?2=1 with counterclockwise orientation. Problem 2: Which of the following equations represents a plane which is parallel to the plane 36?−18?+12?=30 and which passes through the point (3,6,1) ? a). 6?−3?+2?=3 b). 6?+3?−2?=34 c). 36?+18?−12?=204 d). 6?−3?+2?=2 e). 36?+18?+12?=228
Find all x values for which the function y = x^3 + 6x^2 + 3x +...
Find all x values for which the function y = x^3 + 6x^2 + 3x + 7 has a horizontal tangent line. Find the derivative of f(x) using the definition for a limit.
Let f(x,y) = 3x^2 + 6xy a) find the rate of change of f at the...
Let f(x,y) = 3x^2 + 6xy a) find the rate of change of f at the point P(3,2) in the direction of u = [3,4] b) In what direction does f have the maximum rate of change? what is the maximum rate of change?
Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3...
Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3 ,(m − 2)x2 ,(1 − m)xz2 ] (a) Find m such that the line integral is path independent; (b) Find a scalar function f such that F = grad f; (c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).
Q2. Given the line integral C F (r) · dr where F(x,y,z) = [mxy − z3,(m...
Q2. Given the line integral C F (r) · dr where F(x,y,z) = [mxy − z3,(m − 2)x2,(1 − m)xz2] ∫ (a) Find m such that the line integral is path independent; (b) Find a scalar function f such that F = grad f ; (c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).
Exact Differential Equations: (3x^2 y^2 - 3y^2) dx + (2x^3y - 6xy + 3y^2) dy =...
Exact Differential Equations: (3x^2 y^2 - 3y^2) dx + (2x^3y - 6xy + 3y^2) dy = 0
given y1 find y2 (Differential Equations) (3x-1)y''-(3x+2)y'-(6x-8)y=0 and y1=e^(2x)
given y1 find y2 (Differential Equations) (3x-1)y''-(3x+2)y'-(6x-8)y=0 and y1=e^(2x)
Find the relative maximum and minimum values. a. f(x,y)=x^3-6xy+y^2+6x+3y-1/5 Relative minimum: ________ at ________ Relative maximum:...
Find the relative maximum and minimum values. a. f(x,y)=x^3-6xy+y^2+6x+3y-1/5 Relative minimum: ________ at ________ Relative maximum: ________ at ________ b. f(x,y)= 3x-6y-x^2-y^2 Relative minimum: ________ at ________ Relative maximum: ________ at ________
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y, z) = sin(x) i + cos(y) j + xz k r(t) = t5 i − t4 j + t k, 0 ≤ t ≤ 1
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT