In: Math
Fundamental Theorem of Line Integrals Consider the line integral: ∮_C▒〈6xy+6x, 3x^2-3 cos(y) 〉 ∙dr ⃗ where C is the line segment from the origin to (4, 5). Evaluate this integral by rewriting the integral as a standard single variable integral of the parameter t. Without finding a potential function show that the integrand is a gradient field. Find a potential function for the vector field. Use the Fundamental Theorem of Line Integrals to evaluate this integral.
C is the line segment from the origin to (4, 5)
r(t)=〈4t,5t〉 ,0≤t≤1
=>r'(t)=〈4,5〉
F=〈6xy+6x, 3x2-3cos(y)〉
=>F(r(t))=〈6(4t)(5t)+6(4t), 3(4t)2-3cos(5t)〉
=>F(r(t))=〈120t2+24t, 48t2-3cos(5t)〉
∮_C▒〈6xy+6x, 3x^2-3 cos(y) 〉 ∙dr ⃗
=0∫1F(r(t)) .r'(t) dt
=0∫1〈120t2+24t, 48t2-3cos(5t)〉.〈4,5〉
dt
=0∫1[(120t2+24t)(4)+(48t2-3cos(5t))(5)]
dt
=0∫1[480t2+96t+240t2-15cos(5t)]
dt
=0∫1[720t2+96t-15cos(5t)]
dt
=[240t3+48t2-3sin(5t)] 0|1
=[240(1)3+48(1)2-3sin(5*1)]-[240(0)3+48(0)2-3sin(5*0)]
=[240+48-3sin(5)]-[0+0-3sin(0)]
=288-3sin(5)
-----------------------------------------------------------------------------------------
fx=6xy+6x, fy=3x2-3cos(y)
f=∫fx dx
=>f=∫(6xy+6x) dx
=>f=3x2y+3x2+g(y)
=>fy=3x2+0+g'(y)
=>fy=3x2+g'(y)
3x2+g'(y) =3x2-3cos(y)
=>g'(y) =-3cos(y)
=>g(y) =∫-3cos(y) dy
=>g(y) =-3sin(y) +c
potential function f(x,y)=3x2y+3x2-3sin(y) +c
Using the Fundamental Theorem of Line Integrals
∮_C▒〈6xy+6x, 3x^2-3 cos(y) 〉 ∙dr ⃗
=f(4,5)-f(0,0)
=[3(4)2(5)+3(4)2-3sin(5)
+c]-[3(0)2(0)+3(0)2-3sin(0) +c]
=[240+48-3sin(5) +c]-[0+0-0 +c]
=288-3sin(5)