Question

In: Math

Q2. Given the line integral C F (r) · dr where F(x,y,z) = [mxy − z3,(m...

Q2. Given the line integral C F (r) · dr where
F(x,y,z) = [mxy − z3,(m − 2)x2,(1 − m)xz2]
(a) Find m such that the line integral is path independent;
(b) Find a scalar function f such that F = grad f ;
(c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).

Solutions

Expert Solution


Related Solutions

Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3...
Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3 ,(m − 2)x2 ,(1 − m)xz2 ] (a) Find m such that the line integral is path independent; (b) Find a scalar function f such that F = grad f; (c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists...
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists of the line segment from (2,4,-1) to (1,-1,3).
Evaluate the line integral ∫_C F⋅dr, where F(x,y,z)=−4sin(x)i+3cos(y)j−4xzk and C is given by the vector function...
Evaluate the line integral ∫_C F⋅dr, where F(x,y,z)=−4sin(x)i+3cos(y)j−4xzk and C is given by the vector function r(t)=t^6i−t^5j+t^4k , 0≤t≤1.
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y, z) = sin(x) i + cos(y) j + xz k r(t) = t5 i − t4 j + t k, 0 ≤ t ≤ 1
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk...
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk , 0≤t≤10≤t≤1.
Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )
Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )over the path C consisting of line segments joining (1,1,1) to (1,1,2), (1, 1, 2) to (1, 3, 2), and (1, 3, 2) to (4, 3, 2) in 3 different ways, along the given path, along the line from (1,1,1) to (4,3,2), and finally by finding an anti-derivative, f, for F.
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along...
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along the curve which is given by the intersection of the cylinder x 2 + y 2 = 4 and the plane x + y + z = 2 starting from the point (2, 0, 0) and ending at the point (0, 2, 0) with the counterclockwise orientation.
using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the...
using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1)
1. Evaluate the double integral for the function f(x,y) and the given region R. R is...
1. Evaluate the double integral for the function f(x,y) and the given region R. R is the rectangle defined by -2  x  3 and 1   y  e4 2. Evaluate the double integral    f(x, y) dA R for the function f(x, y) and the region R. f(x, y) = y x3 + 9 ; R is bounded by the lines x = 1, y = 0, and y = x. 3. Find the average value of the function f(x,y) over the plane region R....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. (Please show all work) a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT