Question

In: Math

Evaluate the line integral C F · dr, where C is given by the vector function...

Evaluate the line integral

C

F · dr,

where C is given by the vector function r(t).

F(x, y, z) = sin(x) i + cos(y) j + xz k

r(t) = t5 i − t4 j + t k, 0 ≤ t ≤ 1

Solutions

Expert Solution



Related Solutions

Evaluate the line integral ∫_C F⋅dr, where F(x,y,z)=−4sin(x)i+3cos(y)j−4xzk and C is given by the vector function...
Evaluate the line integral ∫_C F⋅dr, where F(x,y,z)=−4sin(x)i+3cos(y)j−4xzk and C is given by the vector function r(t)=t^6i−t^5j+t^4k , 0≤t≤1.
Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3...
Given the line integral ∫c F(r) · dr where F(x, y, z) = [mxy − z3 ,(m − 2)x2 ,(1 − m)xz2 ] (a) Find m such that the line integral is path independent; (b) Find a scalar function f such that F = grad f; (c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).
Evaluate the line integral, where C is the given curve, where C consists of line segments...
Evaluate the line integral, where C is the given curve, where C consists of line segments from (1, 2, 0) to (-3, 10, 2) and from (-3, 10, 2) to (1, 0, 1). C zx dx + x(y − 2) dy
Q2. Given the line integral C F (r) · dr where F(x,y,z) = [mxy − z3,(m...
Q2. Given the line integral C F (r) · dr where F(x,y,z) = [mxy − z3,(m − 2)x2,(1 − m)xz2] ∫ (a) Find m such that the line integral is path independent; (b) Find a scalar function f such that F = grad f ; (c) Find the work done in moving a particle from A : (1, 2, −3) to B : (1, −4, 2).
Evaluate the line integral, where C is the given curve. C xeyzds, Cis the line segment...
Evaluate the line integral, where C is the given curve. C xeyzds, Cis the line segment from (0, 0, 0) to (2, 3, 4)
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 6 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 1 in the first octant, with orientation toward the origin
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 9 in the first octant, with orientation toward the origin
Evaluate the surface integral    S F · dS  for the given vector field F and the...
Evaluate the surface integral    S F · dS  for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xzey i − xzey j + z k S is the part of the plane x + y + z = 3 in the first octant and has downward orientation
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + z4 k S is the part of the cone z = x2 + y2 beneath the plane z = 1 with downward orientation
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT