Question

In: Advanced Math

1) Define a sequence of polynomials H n (x ) by H 0 (x )=1, H...

1) Define a sequence of polynomials H n (x ) by H 0 (x )=1, H 1 (x )=2 x , and for n>1 by H n+1 (x )=2 x H n (x )−2 n H n−1 (x ) . These polynomials are called Hermite polynomials of degree n. Calculate the first 7 Hermite polynomials of degree less than 7. You can check your results by comparing them to the list of Hermite polynomials on wikipedia (physicist's Hermite polynomials).

2) Use the power series method to solve the differential equation y ' '−2 x y '+λ y=0 where λ is an arbitrary constant. Verify that you get two independent solution y1, y2 by choosing a0=1, a1=0 and a0=0 , a1=1 . Show that the series expansion for one of the two solutions will terminate resulting in a polynomial solution when λ is chosen to be a positive even integer, λ=2 ,4,6,8,10 ,12 ,14 ,.... Rescale the polynomial solution so it starts with 2 n x n + lower powers of x , n=λ/2. Calculate the list of polynomials obtained this way and compare them to your solution of problem 1)

Solutions

Expert Solution


Related Solutions

Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
Find the pointwise limit f(x) of the sequence of functions fn(x) = x^n/(n+x^n) on [0, ∞)....
Find the pointwise limit f(x) of the sequence of functions fn(x) = x^n/(n+x^n) on [0, ∞). Explain why this sequence does not converge to f uniformly on [0,∞). Given a > 1, show that this sequence converges uniformly on the intervals [0, 1] and [a,∞) for any a > 1.
Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a...
Let {an}n∈N be a sequence with lim n→+∞ an = 0. Prove that there exists a subsequence {ank }k∈N so that X∞ k=1 |ank | ≤ 8
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n −...
Fibonacci Sequence: F(0) = 1, F(1) = 2, F(n) = F(n − 1) + F(n − 2) for n ≥ 2 (a) Use strong induction to show that F(n) ≤ 2^n for all n ≥ 0. (b) The answer for (a) shows that F(n) is O(2^n). If we could also show that F(n) is Ω(2^n), that would mean that F(n) is Θ(2^n), and our order of growth would be F(n). This doesn’t turn out to be the case because F(n)...
Let f(x) = {(C/x^n if 1≤ x <∞; 0 elsewhere)} where n is an integer >1....
Let f(x) = {(C/x^n if 1≤ x <∞; 0 elsewhere)} where n is an integer >1. a. Find the value of the constant C (in terms of n) that makes this a probability density function. b. For what values of n does the expected value E(X) exist? Why? c. For what values of n does the variance var(X) exist? Why?
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y =...
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y = X3 + 10X +Z, we have V ar(X +Y ) = V ar(X) +V ar(Y ) + 2Cov(X, Y ) and V ar(X −Y ) = V ar(X) + V ar(Y ) − 2Cov(X, Y ).
Solve the differential equation y''(x)-2xy'(x)+2ny(x)=0 using the Hermite Polynomials
Solve the differential equation y''(x)-2xy'(x)+2ny(x)=0 using the Hermite Polynomials
Recall that a sequence an is Cauchy if, given ε > 0, there is an N...
Recall that a sequence an is Cauchy if, given ε > 0, there is an N such that whenever m, n > N, |am − an| < ε. Prove that every Cauchy sequence of real numbers converges.
x[n] is the input of an LTI system with the impulse response of h[n]. x[n] =...
x[n] is the input of an LTI system with the impulse response of h[n]. x[n] = [1, 2, 3] and h[n] = [4, 6]. Use 4-point DFT and IDFT and zero padding of x[n] and h[n] to find the output y[n].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT