Question

In: Electrical Engineering

Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...

Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)

Solutions

Expert Solution

The N point DFT of a sequence x[n] is given as

Where

Given

We will evaluate the 4 point DFT. So N = 4

So

For k = 0

For k = 1

So

For k = 2

So

For k = 3

So

So the 4 point DFT is

Verification using MATLAB


Related Solutions

Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x...
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x is a variable that will be assigned. Use matlab to compute S for x = 7 and n (number of terms) = 5.   Write the value below as the one displayed when you issue "format short" in matlab. Explain the process and result of the question.
Given the following dataset x   1   1   2   3   4   5 y   0   2   4   5  ...
Given the following dataset x   1   1   2   3   4   5 y   0   2   4   5   5   3 We want to test the claim that there is a correlation between xand y. The level of cretaine phosphokinase (CPK) in blood samples measures the amount of muscle damage for athletes. At Jock State University, the level of CPK was determined for each of 25 football players and 15 soccer players before and after practice. The two groups of athletes are trained...
Given the following dataset x 1 1 2 3 4 5 y 0 2 4 5...
Given the following dataset x 1 1 2 3 4 5 y 0 2 4 5 5 3 We want to test the claim that there is a correlation between xand y. (a) What is the null hypothesis Ho and the alternative hypothesis H1? (b) Using α= 0.05, will you reject Ho? Justify your answer by using a p-value. (c) Base on your answer in part (b), is there evidence to support the claim? (d) Find r, the linear correlation...
Given the sequence {an}∞ n=1 where an = 3ne−6n A) Justify whether the sequence is increasing...
Given the sequence {an}∞ n=1 where an = 3ne−6n A) Justify whether the sequence is increasing or decreasing. B) Is the sequence bounded? If yes, what are the bounds? C) Determine whether the sequence converges or diverges. State any reason (i.e result, theorems) for your conclusion.
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1...
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1 9 2 13 3 14 4 13 5 18 What are the confidence limits (alpha = 0.05) for the true mean value of Y when X = 3?
1) Define a sequence of polynomials H n (x ) by H 0 (x )=1, H...
1) Define a sequence of polynomials H n (x ) by H 0 (x )=1, H 1 (x )=2 x , and for n>1 by H n+1 (x )=2 x H n (x )−2 n H n−1 (x ) . These polynomials are called Hermite polynomials of degree n. Calculate the first 7 Hermite polynomials of degree less than 7. You can check your results by comparing them to the list of Hermite polynomials on wikipedia (physicist's Hermite polynomials). 2)...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x,...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x, y, z) = (4, -3, 5) + s(5, 1, -1) a) determine a vector equation for the plane that combines the two lines b) parametric equations of the plane that contains the two lines c) Cartesian equation of the plane that contains the two lines
Recall that a sequence an is Cauchy if, given ε > 0, there is an N...
Recall that a sequence an is Cauchy if, given ε > 0, there is an N such that whenever m, n > N, |am − an| < ε. Prove that every Cauchy sequence of real numbers converges.
Let f(x) = {(C/x^n if 1≤ x <∞; 0 elsewhere)} where n is an integer >1....
Let f(x) = {(C/x^n if 1≤ x <∞; 0 elsewhere)} where n is an integer >1. a. Find the value of the constant C (in terms of n) that makes this a probability density function. b. For what values of n does the expected value E(X) exist? Why? c. For what values of n does the variance var(X) exist? Why?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT