Question

In: Statistics and Probability

Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y =...

Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y = X3 + 10X +Z, we have V ar(X +Y ) = V ar(X) +V ar(Y ) + 2Cov(X, Y ) and V ar(X −Y ) = V ar(X) + V ar(Y ) − 2Cov(X, Y ).

Solutions

Expert Solution

Following is the R code with comments (all statements starting with # are comments)

#set the random seed
set.seed(123)
#set the number of simulations
N<-10000
#draw X from N(0,1)
x<-rnorm(N)
#draw Z from N(0,1)
z<-rnorm(N)
#calculate y
y<-x^3+10*x+z
#calculate the variance of (X+Y)
v_xpy<-var(x+y)
#calculate the variance using var(x)+var(y)+2*cov(x,y)
v<-var(x)+var(y)+2*cov(x,y)
sprintf('Var(X+Y)=%.4f and Var(X)+Var(Y)+2Cov(X,Y)=%.4f',v_xpy,v)

#calculate the variance of (X-Y)
v_xmy<-var(x-y)
#calculate the variance using var(x)+var(y)-2*cov(x,y)
v<-var(x)+var(y)-2*cov(x,y)
sprintf('Var(X-Y)=%.4f and Var(X)+Var(Y)-2Cov(X,Y)=%.4f',v_xmy,v)

## get this output

Hence proved that

Var(X +Y) &= Var(X) +Var(Y) + 2Cov(X,Y) and
Var(X −Y) &= Var(X) + Var(Y) − 2Cov(X,Y)


Related Solutions

Use two different ways to prove X Y + Z = (X + Z)(Y + Z)....
Use two different ways to prove X Y + Z = (X + Z)(Y + Z). a) Use pure algebraic way b) k-maps
1. Prove by contraction that    L = {0^x 1^y 0^x+y | x >= 1 and...
1. Prove by contraction that    L = {0^x 1^y 0^x+y | x >= 1 and y >=1} is not Regular.    Must use the Pumping Lemma. [ HINT: Describe the language in English first. Use example 3 from the lecture notes ] a) Choose one S from L where S is longer than N       (Describe S in terms of N and M)       S = **??** b) List all places v can be in S: (i.e. all possible...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z)...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z) b. X×(Y×Z) = (X.Z)Y – (X.Y)Z c. X.(Y×Z) = -Y.(X×Z)
Let x, y ∈ Z. Prove that x ≡ y + 1 (mod 2) if and...
Let x, y ∈ Z. Prove that x ≡ y + 1 (mod 2) if and only if x ≡ y + 1 (mod 4) or x ≡ y + 3 (mod 4)
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y...
. Let x, y ∈ R \ {0}. Prove that if x < x^(−1) < y < y^(−1) then x < −1.
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n...
Let x, y ∈ R. Prove the following: (a) 0 < 1 (b) For all n ∈ N, if 0 < x < y, then x^n < y^n. (c) |x · y| = |x| · |y|
If (x,y,z) is a primitive Pythagorean triple, prove that z= 4k+1
If (x,y,z) is a primitive Pythagorean triple, prove that z= 4k+1
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is...
Given f(x,y) = 2 ; 0< x ≤ y < 1 a. Prove that f(x,y) is a joint pdf. b. Find the correlation coefficient of X and Y.
Find the center mass of the solid bounded by planes x+y+z=1x+y+z=1, x=0x=0, y=0y=0, and z=0z=0, assuming...
Find the center mass of the solid bounded by planes x+y+z=1x+y+z=1, x=0x=0, y=0y=0, and z=0z=0, assuming a mass density of ρ(x,y,z)=5√z.
Q1, what is negations of(∃x ∈ Z)x ≤ 0 ⇒ (∀y ∈ Z). xy > 0...
Q1, what is negations of(∃x ∈ Z)x ≤ 0 ⇒ (∀y ∈ Z). xy > 0 Q2, Prove by induction that 14n + 12n − 5 n is divisible by 7 for all n > 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT