Question

In: Mechanical Engineering

The person’s mass, m= 68.1 kg, the unknown drag coefficient is, c , with units kg/s,...

The person’s mass, m= 68.1 kg, the unknown drag coefficient is, c , with units kg/s, and the local acceleration of gravity is g= 9.80 m/s2 . Our model for the person’s velocity vs time gave us a linear differential equation whose analytical solution was the following:
V(t) = g*m/c*[1-exp(-c/m*t)].


Your job is to find “c”. You need to use the MATLAB “help” documentation to find the nonlinear curve fitting function and syntax for how to use it. Hint you should use the documentation and example for “lsqcurvefit”.
Include in your program a plot of the experimental velocity data vs time and the calculated velocity vs time. The graph should have a title, x and y labeled axis, and a legend. It is likely your legend will not be placed in a good position. Use again the MATLAB “help” documentation to learn how to move it to the southeast corner inside your plot.

The following table is experimental data regarding our parachutist. We have a measured velocity versus time after the jump, but before the chute is opened:
Time t (sec)

Velocity, cm/s
0


1
1000
2

1630

3
2300
4

2750
5

3100

6
3560
7

3900

8
4150
9

4290

10
  
4500

11
4600
12

4550

13
4600
14

4900

15
5000

Solutions

Expert Solution

clc
clear all


m = 68.1;
g = 9.81;

tdata = 0:15;
vdata = [0 1000 1630 2300 2750 3100 3560 3900 4150 4290 4500 ...
4600 4550 4600 4900 5000 ];

plot(tdata, vdata,'or','MarkerFaceColor','g');
fun =@(c,tdata) 100*(g*m/c)*(1- exp(-c*tdata/m)); % 100 is multiplied to
% convert m/s to cm/s

c = lsqcurvefit(fun,20,tdata,vdata);
fprintf('c = %0.5f\n',c);

t = linspace(0,15);
v = fun(c,t);
hold on
plot(t,v,'-b','LineWidth',2);
xlabel('times( sec )');
ylabel('v(t) cm/s');
title('Parachute velocity vs time');
legend('Experimental curve','Fitted curve','Location','southeast');


Related Solutions

A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction μk = 0.06, for a distance d = 5.1 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle θ = 28° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 28° (thus on the incline it is...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction ?k = 0.06, for a distance d = 6.7 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle ? = 33° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of ? = 33° (thus on the incline it is...
Example #2A block with mass m = 5 kg sits on a surface with a coefficient...
Example #2A block with mass m = 5 kg sits on a surface with a coefficient of static friction sk= 0.5 and a coefficient of kinetic friction uk= 0.3. a)If you can pull on the block at any angle, what minimum force is required to break static friction and cause the block to slide? b)What is the optimal angle to pull at? c)If you pull at the optimal angle with the minimum force, what will the acceleration of the block...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
You (mass 81 kg) and your friend (mass unknown) are in a rowboat (mass 65 kg)...
You (mass 81 kg) and your friend (mass unknown) are in a rowboat (mass 65 kg) on a calm lake. You are at the center of the boat rowing and she is at the back, 2 m from the center. You get tired and stop rowing. She offers to row and after the boat comes to rest, you change places. You notice that after changing places the boat has moved 20 cm relative to a fixed log. What is your...
8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass...
8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass at rest. After the collision 3 kg is deflected by 30 degree while the 5 kg is deflected by 45 degrees. a) Draw a diagram for the initial and final motion including the directions of the velocities b) Find the final velocities of each mass c) Determine if the collision is elastic or not. d) Qualitatively, show the direction of the impulse (or the...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.9 of its original kinetic energy. If the masses remain in contact for 0.01 secs while colliding, what is the average force in N between the masses during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You...
A car with a mass of 1000 kg and a speed of v1 = 20.0 m/s...
A car with a mass of 1000 kg and a speed of v1 = 20.0 m/s approaches an intersection, as shown in the figure(Figure 1). A 1230 kg minivan traveling at v2 is heading for the same intersection. The car and minivan collide and stick together. The direction of the wreckage after the collision is θ = 44.0 ∘ above the x-axis. You may want to review(Pages 272 - 277). Part A: Find the initial speed of the minivan, assuming...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT