Question

In: Physics

A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...

A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction ?k = 0.06, for a distance d = 6.7 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle ? = 33° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of ? = 33° (thus on the incline it is parallel to the surface) and has a tension T = 46 N.

What is the work done by tension before the block gets to the incline?

What is the work done by friction as the block slides on the flat horizontal surface?

What is the speed of the block right before it begins to travel up the incline?

How far up the incline does the block travel before coming to rest?

What is the work done by gravity as it comes to rest?

During the entire process, the net work done on the block is:

Solutions

Expert Solution

a) Work done by tension = T x d = 46 x 6.7 = 308.2 J

b)Work done by friction = uW x d = 0.06 x 17 x 9.81 x 6.7 = 67J

c) Net force in Block = Tension - Friction = 46 - 0.06 x 17 = 44.9 N

accleration = F/m = 44.9 / 17 = 2.64 m/s2

v = 6m/s

d) Net force when moving up the incline = T - Wsin 33 = 46 - 17 x 9.81 x sin 33 = -44.8 N

accleration = -44.8 / 17 = -2.63 m/s2

s = 6.8 m

After 6.8m in the incline the block will stop moving


Related Solutions

A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction μk = 0.06, for a distance d = 5.1 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle θ = 28° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 28° (thus on the incline it is...
A mass m = 16 kg is pulled along a horizontal floor with NO friction for...
A mass m = 16 kg is pulled along a horizontal floor with NO friction for a distance d =8.4 m. Then the mass is pulled up an incline that makes an angle ? = 25
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
An 10.6 kg object is pulled along a horizontal surface at constant speed. If the coefficient...
An 10.6 kg object is pulled along a horizontal surface at constant speed. If the coefficient of friction is 0.11, what is the force of friction? An applied force of 10.9 N [right] provides a 9.46 kg object with a net acceleration of 2.31 m/s2 [right] on a flat surface. What is the magnitude of the force of friction acting on the object? A 6.2 kg object is pulled along a horizontal surface by a force of 22.0N. If its...
A 78.0 kg hoop rolls along a horizontal floor so that its center of mass has...
A 78.0 kg hoop rolls along a horizontal floor so that its center of mass has a speed of 0.190 m/s. How much work must be done on the hoop to stop it?
Let's suppose we are pulling a box of mass m along a horizontal floor. All sides...
Let's suppose we are pulling a box of mass m along a horizontal floor. All sides of the box have the same type of surface (same coefficient of friction between any side and the floor). In one case, the contact surface is much larger (first picture) and in another, it is much smaller. Will there be any difference in the force of friction? Why?
A 91 kg crate, starting from rest, is pulled across a floor with a constant horizontal...
A 91 kg crate, starting from rest, is pulled across a floor with a constant horizontal force of 340 N . For the first 15m the floor is frictionless, and for the next 15 m the coefficient of friction is 0.22. What is the final speed of the crate?
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor....
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor. You begin to push the sphere until it is rotating at 42.6 Hz. Assume the sphere always moves by rolling without slipping. Find the work you have done to accelerated the sphere, in J.
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
A four-wheel cart of mass M = 95 kg is moving along a horizontal surface with...
A four-wheel cart of mass M = 95 kg is moving along a horizontal surface with a constant velocity V = 3.5 m/s relative to the ground. A person of mass m1 = 65 kg carrying a backpack of m2 = 8 kg runs and catches up to the cart, and then jumps onto the cart. Just before landing on the cart, the person is moving parallel to the ground and the velocity of the center of mass of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT