In: Physics
Example #2A block with mass m = 5 kg sits on a surface with a coefficient of static friction sk= 0.5 and a coefficient of kinetic friction uk= 0.3. a)If you can pull on the block at any angle, what minimum force is required to break static friction and cause the block to slide? b)What is the optimal angle to pull at? c)If you pull at the optimal angle with the minimum force, what will the acceleration of the block be once static friction is broken?
along vertical
Fn + F*sintheta = mg
normal force , Fn = m*g - F*sintheta
frictional force fs = us*Fn = us*(m*g - F*sintheta)
when the friction breaks
fs = F*costheta
us*mg - us*F*sintheta = F*costheta
F*(us*sintheta + costheta) = us*m*g
F = us*m*g / (us*sintheta + costheta)
for F to be minimum
dF/dtheta = 0
us*costheta - sintheta = 0
tantheta = us
theta = tan^-1(us)
theta = 26.56 degrees
when the force is applied at optimal angle theta =
26.56
along vertical
Fn + F*sintheta = mg
normal force , Fn = m*g - F*sintheta
frictional force fs = us*Fn = us*(m*g - F*sintheta)
when the friction breaks
fs = F*costheta
us*(m*g - F*sintheta) = F*costheta
0.5*((5*9.8) - (F*sin26.56)) = F*cos26.56
minimum force F = 21.9 N
<<<----------------answer
optimal angle theta = 26.56 degrees
-------------------------
(c)
Fnet = m*a
F*costheta - fk = m*a
F*costheta - uk*Fn = m*a
F*costheta - uk*(m*g - F*sintheta) = m*a
21.9*cos26.56 - 0.3*((5*9.8) - 21.9*sin26.56) =
5*a
acceleration a = 1.565 m/s^2