Question

In: Statistics and Probability

Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test...

Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (b) Find the corresponding Wald test. (c) How do these tests compare and which would you prefer?

Solutions

Expert Solution


Related Solutions

Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0...
Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (a) Find the size-α LRT. Express the rejection region in the form of R = {X > c ¯ } where c will depend on a value from the χ 2 2n distribution. (b) Find the appropriate value of c. (c) Find the formula for the P-value of this test. (d) Compare this test...
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR...
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR in Y = X(n)? (b) Find the UMP size-α test for H0 : θ ≤ θ0 vs H1 : θ > θ0. (c) Find the UMP size-α test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (d) Letting R1 be the rejection region for the test in part (b) and R2 be the rejection region for the test in part...
For a fixed θ>0, let X1,X2,…,Xn be i.i.d., each with the beta (1,θ) density. i) Find...
For a fixed θ>0, let X1,X2,…,Xn be i.i.d., each with the beta (1,θ) density. i) Find θ^ that is the maximum likelihood estimate of θ. ii) Let X have the beta (1,θ) density. Find the density of −log⁡(1−X). Recognize this as one of the famous ones and provide its name and parameters. iii) Find f that is the density of the MLE θ^ in part (i).
Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0...
Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0 : θ ≤ θ0 vs H1 : θ > θ0. (a) If σ^2 is known, we can use the UMP size-α test. Find the formula for the P-value of this test.
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1),...
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1), if 0 ≤ x ≤ 1} 0 otherwise Find the maximum likelihood estimate for θ. Explain, using Strong Law of Large Numbers, that this maximum likelihood estimate is consistent.
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) the asymptotic variance of the MLE of ?. d) the MLE of SD(Xi ) = √ ?.
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an...
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an unbiased estimator of θ^2 based on (Xn)^2. (b) Calculate it’s variance and compare it with the Cram ́er-Rao lower bound.
Let X1,...,Xn ∼ Geo(θ). (a) Find a 90% asymptotic confidence interval for θ. (b) Find a...
Let X1,...,Xn ∼ Geo(θ). (a) Find a 90% asymptotic confidence interval for θ. (b) Find a 99% asymptotic lower confidence intervals for φ = 1/θ, the expected number of trials until the first success.
Let X1, ..., Xn be iid with pdf f(x; θ) = (1/ x√ 2π) e(-(logx- theta)^2)...
Let X1, ..., Xn be iid with pdf f(x; θ) = (1/ x√ 2π) e(-(logx- theta)^2) /2 Ix>0 for θ ∈ R. (a) (15 points) Find the MLE of θ. (b) (10 points) If we are testing H0 : θ = 0 vs Ha : θ != 0. Provide a formula for the likelihood ratio test statistic λ(X). (c) (5 points) Denote the MLE as ˆθ. Show that λ(X) is can be written as a decreasing function of | ˆθ|...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 =...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 = X¯ − 1 2 and ˆθ2 = X(n) − n n + 1 are both consistent estimators for θ.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT