In: Chemistry
The equilibrium constants of the reactions
FeO(s) + CO(g) = Fe(s) + CO2; K1
FeO (s) + H2(g) = Fe(s) + H2O (g) ; K2
temp (oC) 600 700 800 900 1000
-------------------------------------------------------------
K1 0.900 0.673 0.535 0.453 0.396
K2 0.332 0.422 0.499 0.594 0.668
Calculate the equilibrium constant of the reaction
CO(g) + H2O(g) = CO2 (g) + H2(g)
at the above temperature Also calculate the heat of the reaction.
The equilibrium constants of the reactions
FeO(s) + CO(g) <==> Fe(s) + CO2 (g) ; K1
K1 = [Fe] [CO2]/ [FeO] [CO]
FeO (s) + H2(g) = Fe(s) + H2O (g) ; K2
K2 = [Fe] [ H2O]/ [FeO] [ H2]
CO(g) + H2O(g) <==> CO2 (g) + H2(g) ; K3
K3 = [CO2] [ H2]/ [CO] [ H2O]
we can write , K3 = K1 /K2 = [CO2] [ H2]/ [CO] [ H2O]
So, from given data :
Temp. (C) | 600 | 700 | 800 | 900 | 1000 |
K1 | 0.900 | 0.673 | 0.535 | 0.453 | 0.396 |
K2 | 0.332 | 0.422 | 0.499 | 0.594 | 0.668 |
K3 = K1 /K2 | 2.79 | 1.59 | 1.07 | 0.763 | 0.593 |
we have, G (T) = -RT ln K
From integrated form of Gibbs-helmholtz equation :
we can write : we assume enthalpy remains constant over temperature range)
G (T2)/ T2 - G (T1)/ T1 = H (1/T2 - 1/T1)
we choose, T2 = 800 C and T1 = 600 C
G (T1) = -8.314 J/K-mol *873 K ln 2.79 = - 7.45 kJ/mol
G (T2) = -8.314 J/K-mol *1073 K ln 1.07 = - 0.604 kJ/mol
putting value in equation :
(- 0.604 kJ/mol/ 1073 K ) - ( - 7.45 kJ/mol/ 873 K) = H (1/1073 - 1/873)
H (reaction) = -37.33 kJ/mol.