In: Chemistry
Given the following data:
3FeO(s) + CO2(g) → Fe3O4(s) + CO(g) ΔH° = -18.0 kJ
FeO(s) + CO(g) → Fe(s) + CO2(g) ΔH° = -11.0 kJ
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) ΔH° = -23.0 kJ
Calculate ΔH° for the reaction: 3Fe2O3(s) + CO(g) → 2Fe3O4(s) + CO2(g)
The reactions have to be rearranged so that summation of the reaction lead to the required reaction
Reaction 1 needs to be multiplied by 2
6FeO(s) + 2CO2(g) → 2Fe3O4(s) + 2CO(g) ΔH° = -36.0 kJ
Reaction 2 needs to be reversed and multiplied by 6 so sign of ΔH° for this reaction changes
6Fe(s) + 6CO2(g) → 6FeO(s) + 6CO(g) ΔH° = 66.0 kJ
Reaction 3 needs to be multiplied by 3
3Fe2O3(s) + 9CO(g) → 6Fe(s) + 9CO2(g) ΔH° = -69.0 kJ
Adding these reactions
6FeO(s) + 2CO2(g) → 2Fe3O4(s) + 2CO(g) ΔH° = -36.0 kJ
6Fe(s) + 6CO2(g) → 6FeO(s) + 6CO(g) ΔH° = 66.0 kJ
3Fe2O3(s) + 9CO(g) → 6Fe(s) + 9CO2(g) ΔH° = -69.0 kJ
---------------------------------------------------------------------------------------
6FeO(s) + 8CO2(g) + 6Fe(s) + 3Fe2O3(s) + 9CO(g) →2Fe3O4(s) + 8CO(g) + 6FeO(s) + 6Fe(s) + 9CO2(g) ΔH° = -39.0 kJ
Cancelling terms between reactants and products we get
3Fe2O3(s) + CO(g) → 2Fe3O4(s) + CO2(g) ΔH° = -39.0 kJ The required reaction with its ΔH°