Question

In: Chemistry

A-Calculate the equilibrium concentration of IBr and I2 for the reaction 2 IBr(g) ⇄ I2 (g)...

A-Calculate the equilibrium concentration of IBr and I2 for the reaction 2 IBr(g) ⇄ I2 (g) + Br2 (g) when the initial [IBr] = 1.00 M and the concentrations of the products is initially zero. (KC = 2.50x10-3) [IBr]equilibrium = _______________ [I2]equilibrium =_______________

B- KC = 1.88x10-14 for the reaction CH3NC(g) ⇄ CH3CN(g). If the initial concentrations are [CH3NC] = 0.122 M and [CH3CN] = 0.244 M, what is the equilibrium concentration of CH3CN? [CH3CN] = _______________ M

Solutions

Expert Solution

In the second part, since the value of KC is very less and hence the reaction barely moves in forward direction. So yhe concentration of the reactants and the products will not change much.

Both of them will have the same concenterations on equilibrium.


Related Solutions

Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1...
Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1 × 102 This reaction mixture contains initially 0.41 M I2 and 0.27 M Br2. Calculate the equilibrium concentration of I2, Br2, and IBr? Please help with this, Can I find a example similar to this anywhere. I can't figure out some of the parts of this problem.
For the equilibrium 2IBr(g)?I2(g)+Br2(g) Kp=8.5×10?3 at 150 ?C. A) If 2.1×10?2 atm of IBr is placed...
For the equilibrium 2IBr(g)?I2(g)+Br2(g) Kp=8.5×10?3 at 150 ?C. A) If 2.1×10?2 atm of IBr is placed in a 2.0-L container, what is the partial pressure of IBr after equilibrium is reached? Express your answer to two significant figures and include the appropriate units. B) If 2.1×10?2 atm of IBr is placed in a 2.0-L container, what is the partial pressure of I2 after equilibrium is reached? Express your answer to two significant figures and include the appropriate units. C) If...
Consider the reaction: I2(g) + Cl2(g) ↔ 2 ICl (g) Calculate ΔGrxnfor the reaction at 25oC...
Consider the reaction: I2(g) + Cl2(g) ↔ 2 ICl (g) Calculate ΔGrxnfor the reaction at 25oC under each of the following conditions: a. Standard conditions b. At equilibrium c. PICl= 2.55 atm; PI2= 0.325 atm; PCl2= 0.221 atm
The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃
                    The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃   Calculate the equilibrium concentrations of H2, I2, and HI at 430 ℃   if the initial concentrations are [H2] = [I2] = 0.222 M and [HI] = 0 M.[H2]eq = M[I2]eq = M[HI]eq = M
Consider the reaction of I2 (g) described by I2 (g) = 2 I (g). The total...
Consider the reaction of I2 (g) described by I2 (g) = 2 I (g). The total pressure and partial pressure of I2 (g) at 14000C have been measured to be 36.0 torr and 28.1 torr, respectively. Use these data to calculate KP0, K0c, and Kx at 14000C. Calculate xI under these conditions? What would X1 be if we decreased the total pressure to 36.0×10-6 torr? What would X1 be if we increased the total pressure to 36.0 atm?
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2...
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2 reacts with 2.000 M of I2 at a temperature of 441°C. The value of Kc = 67. Determine the equilibrium concentrations of H2, I2, and HI.
For the reaction H2(g) + I2(g) ↔ 2HI the value of the equilibrium constant is 25....
For the reaction H2(g) + I2(g) ↔ 2HI the value of the equilibrium constant is 25. Starting with 1.00mol of each reactant in a 10.L vessel, how many moles of HI will be present at equilibrium?
At 500K, the equilibrium constant, Keq, is 155 for the reaction H2(g) + I2(g) ↔ 2HI(g)....
At 500K, the equilibrium constant, Keq, is 155 for the reaction H2(g) + I2(g) ↔ 2HI(g). Calculate the equilibrium constant for the reaction  2H2(g) + 2I2(g) ↔ 4HI(g), 1/2H2(g) + 1/2I2(g) ↔ HI(g), and 2HI(g)  ↔ H2(g) + I2(g).
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature,...
At a certain temp, the equilibrium constant for this reaction is 53.3. H2(g)+I2(g)=2HI(g) At this temperature, 0.7 mol of H2 and 0.7 mol of I2 were placed in a 1 L container. What is the concentration of HI present at equilibrium?
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌...
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌ 2HI(g) Initially, 0.90 M H2, I2, and HI are introduced into a 5.0-L flask and allowed to come to equilibrium. What are the equilibrium concentrations of H2, I2, and HI in the flask? (10 points) (Does the size of flask matter since Molarity is given?)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT