In: Finance
Suppose that a firm’s recent earnings per share and dividend per share are $2.85 and $2.00, respectively. Both are expected to grow at 12 percent. However, the firm’s current P/E ratio of 21 seems high for this growth rate. The P/E ratio is expected to fall to 17 within five years.
Compute the dividends over the next five years
DIVIDENDS | YEARS |
FIRST YEAR | |
SECOND YEAR | |
THIRD YEAR | |
FOURTH YEAR | |
FIFTH YEAR |
Compute the value of this stock price in five years.
Calculate the present value of these cash flows using a 14 percent discount rate.
Dividend over the next 5 years
Year |
Dividend per share ($) |
First year [$2.00 x 112%] |
2.240 |
Second year [$2.240 x 112%] |
2.509 |
Third year [$2.509 x 112%] |
2.810 |
Fourth year [$2.810 x 112%] |
3.147 |
Fifth year [$3.147 x 112%] |
3.525 |
Value of the Stock in 5 Years
Recent EPS = $2.85 per share
Growth Rate (g) = 12.00% per year
EPS after 5 years = EPS x (1 + g) n
= $2.85 x (1 + 0.12)5
= $2.85 x 1.76234
= $5.02267 per share
P/E ratio after 5 years = 17 Times
Therefore, the Value of the stock after 5 years = EPS x P/E Ratio
= $5.02267 per share x 17 Times
= $85.39 per share
The Present Value of the Cash flows using 14% Discount Rate
As per Dividend Discount Model, the Value of the Stock is the aggregate of the Present Value of the future dividend payments and the present value the stock price for the year 5
Year |
Cash flow ($) |
Present Value Factor (PVF) at 14.00% |
Present Value of cash flows ($) [Cash flows x PVF] |
1 |
2.240 |
0.87719 |
1.96 |
2 |
2.509 |
0.76947 |
1.93 |
3 |
2.810 |
0.67497 |
1.90 |
4 |
3.147 |
0.59208 |
1.86 |
5 |
3.525 |
0.51937 |
1.83 |
5 |
85.385 |
0.51937 |
44.35 |
TOTAL |
53.83 |
||
Therefore, the Present Value of the Cash flows using 14% discount rate is $53.83
NOTE
The Formula for calculating the Present Value Factor is [1/(1 + r)n], Where “r” is the Discount/Interest Rate and “n” is the number of years.