Question

In: Statistics and Probability

Suppose a simple random sample from a normal population yields the following data: x1 = 20,...

Suppose a simple random sample from a normal population yields the following data: x1 = 20, x2 = 5, x3 = 10, x4 = 13, x5 = 17, x6 = 18. Find a 95% confidence interval for the population mean μ.

A. [11.53, 16.13] B. [10.03, 17.63] C. [9.32, 18.34] D. [7.91, 19.75] E. other value

SHOW WORK

Solutions

Expert Solution

TOPIC:Confidence interval for the population mean.


Related Solutions

A random sample from a normal population yields the following 25 values:
A random sample from a normal population yields the following 25 values:                       90 87 121 96 106 107 89 107 83 92                       117 93 98 120 97 109 78 87 99 79                        104 85 91 107 89a. Calculate an unbiased estimate of the population variance.b. Give approximate 99% confidence interval for the population variance.c. Interpret your results and state any assumptions you made in order to solve the problem.  
The following data is for a simple random sample taken from a normal population: 2.41 2.45...
The following data is for a simple random sample taken from a normal population: 2.41 2.45 2.21 2.32 2.25 2.38 (a) Find a 95% prediction interval. (b) Find a tolerance interval that contains 90% of the data with 95% confidence
The following data is for a simple random sample taken from a normal population: 2.41 2.45...
The following data is for a simple random sample taken from a normal population: 2.41 2.45 2.21 2.32 2.25 2.38 (a) Find a 95% prediction interval. (b) Find a tolerance interval that contains 90% of the data with 95% confidence
a simple random sample of size 36 is taken from a normal population with mean 20...
a simple random sample of size 36 is taken from a normal population with mean 20 and standard deivation of 15. What is the probability the sample,mean,xbar based on these 36 observations will be within 4 units of the population mean. round to the hundreths place
Suppose we take a random sample X1,…,X5 from a normal population with unknown variance σ2 and...
Suppose we take a random sample X1,…,X5 from a normal population with unknown variance σ2 and unknown mean μ. We test the hypotheses H0:σ=2 vs. H1:σ<2 and we use a critical region of the form {S2<k} for some constant k. (1) - Determine k so that the type I error probability α of the test is equal to 0.05. (2) - For the value of k found in part (1), what is your conclusion in this test if you see...
Suppose we take a random sample X1,…,X5 from a normal population with an unknown variance σ2...
Suppose we take a random sample X1,…,X5 from a normal population with an unknown variance σ2 and unknown mean μ. Construct a two-sided 95% confidence interval for σ2 if the observations are given by −1.25,1.91,−0.09,2.71,2.70
Suppose we take a random sample X1,…,X7 from a normal population with an unknown variance σ21...
Suppose we take a random sample X1,…,X7 from a normal population with an unknown variance σ21 and unknown mean μ1. We also take another independent random sample Y1,…,Y6 from another normal population with an unknown variance σ22 and unknown mean μ2. Construct a two-sided 90% confidence interval for σ21/σ22 if the observations are as follows: from the first population we observe 3.50,0.64,2.68,6.32,4.04,1.58,−0.45 and from the second population we observe 1.85,1.53,1.57,2.13,0.74,2.17
Assume that each sample is a simple random sample obtained from a population with a normal...
Assume that each sample is a simple random sample obtained from a population with a normal distribution. a. n= 93 mean=3.90968 s=0.51774 Construct a 99​% confidence interval estimate of the standard deviation of the population from which the sample was obtained. b. n=93 mean=4.09355 s=0.59194 Repeat part​ (a). How do you find values on a chi-square table when the degrees of freedom are a value not commonly found on standard chi-square tables? (In this case, 92)
Let X1, X2, … , Xn be a random sample from a normal population with zero...
Let X1, X2, … , Xn be a random sample from a normal population with zero mean and unknown variance σ^2 . Find the maximum likelihood estimator of σ^2
The following data are from a simple random sample (The population is infinite): Sample Size: 150...
The following data are from a simple random sample (The population is infinite): Sample Size: 150 Sample Mean: 15.5 Population Variance: 186 If the Analysis was run as a two tailed test find the Margin of error LaTeX: \pm± using an alpha value =0.02 (Input the absolute value for the margin of error (that is if the answer is LaTeX: \pm± 3.1, input 3.1) , Use 2 decimals in your answer) Use the appropriate table
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT