In: Statistics and Probability
Suppose we take a random sample X1,…,X5 from a normal population with an unknown variance σ2 and unknown mean μ.
Construct a two-sided 95% confidence interval for σ2 if the observations are given by
−1.25,1.91,−0.09,2.71,2.70
S.No | X | (X-x̄) | (X-x̄)2 | |
1 | -1.25 | -2.446 | 5.98292 | |
2 | 1.91 | 0.714 | 0.50980 | |
3 | -0.09 | -1.286 | 1.65380 | |
4 | 2.71 | 1.514 | 2.29220 | |
5 | 2.7 | 1.504 | 2.26202 | |
Σx | 5.98 | Σ(X-x̄)2= | 12.7007 | |
x̄=Σx/n | 1.20 | s2=Σ(x-x̄)2/(n-1)= | 3.17518 |
here n = | 5 | |||
s2= | 3.175 | |||
Critical value of chi square distribution for n-1=4 df and 95 % CI | 0.95 | |||
Lower critical value χ2L= | 0.484 | |||
Upper critical valueχ2U= | 11.143 |
for Confidence interval of Variance: | ||||
Lower bound =(n-1)s2/χ2U=(5-1)*(3.175/11.143)= | 1.13979 | |||
Upper bound =(n-1)s2/χ2L=(5-1)*(3.175/0.484)= | 26.24116 | |||
from above 95% confidence interval for population variance =(1.14<σ2<26.241) |