Question

In: Physics

A potential difference of 4.50 kV is established between parallel plates in air. If the air...

A potential difference of 4.50 kV is established between parallel plates in air.

If the air becomes ionized (and hence electrically conducting) when the electric field exceeds 3.05×106 V/m , what is the minimum separation the plates can have without ionizing the air?

Answer in mm.

Solutions

Expert Solution

Potential difference (ΔV) between the plates of the capacitor = 4.50 kV

                                                                                                 = 4.50 x 103 V

Electric field (E) between the plates of the capacitor = 3.05 x 106 V/m

Then the minimum separation (d) between the plates of the capacitor is calculated as

                  E = ΔV / d

                  d = ΔV / E

                     = (4.50 x 103 V) / (3.05 x 106 V/m)

                     = 1.475 x 10-3 m

                     = 1.475 mm


Related Solutions

When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor,...
When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 45.0 nC/cm2. What is the spacing between the plates?
A parallel plate air capacitor with no dielectric between the plates is connected to a constant...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant voltage source. How would the capacitance and the charge change if a dielectric of dielectric constant K=2 is inserted between the plates. C0 and Q0 are the capacitance and charge of the capacitor before the introduction of the dielectric.
A parallel-plate capacitor has 2.18 cm2 plates that are separated by 5.69 mm with air between...
A parallel-plate capacitor has 2.18 cm2 plates that are separated by 5.69 mm with air between them. If a 18.0 V battery is connected to this capacitor, how much energy does it store?
An electron was accelerated through a potential difference of 1.00 ± 0.01 kV. What is the...
An electron was accelerated through a potential difference of 1.00 ± 0.01 kV. What is the uncertainty of the position of the electron along its line of flight?
A physicist builds a parallel-plate capacitor with adjustable spacing between the plates. When the plates are...
A physicist builds a parallel-plate capacitor with adjustable spacing between the plates. When the plates are at their initial separation, the capacitance is 7.00 µF. (a) At this capacitance, the capacitor is connected to a 18.00 V battery. After fully charging, how much energy (in µJ) is stored in the capacitor? (b) The battery is then disconnected. Without discharging the capacitor, the physicist then doubles the separation between the plates. At this point, how much energy (in µJ) is stored...
The plates of an air-filled parallel-plate capacitor with a plate area of 15.0 cm2 and a...
The plates of an air-filled parallel-plate capacitor with a plate area of 15.0 cm2 and a separation of 8.95 mm are charged to a 170-V potential difference. After the plates are disconnected from the source, a porcelain dielectric with κ = 6.5 is inserted between the plates of the capacitor. (a) What is the charge on the capacitor before and after the dielectric is inserted? Qi = C Qf = C (b) What is the capacitance of the capacitor after...
​An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 2.20 mm. A 23.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates. kV/m (b) Calculate the surface charge density. nc/m2 (c) Calculate the capacitance. pF (d) Calculate the charge on each plate. pC
A parallel plate, air filled capacitor, has plates of area 0.82 m2 and a separation of...
A parallel plate, air filled capacitor, has plates of area 0.82 m2 and a separation of 0.040 mm. (a) Find the capacitance.   (b) If a voltage of 25 volts is applied to the capacitor, what is the magnitude of the charge on each plate?   (c) What is the energy stored in the capacitor?   Now the plates are filled with strontium titanate having a dielectric constant of 310 and a dielectric strength of 8.0 kV/mm. (d) What is the new value...
The parallel-plates in a capacitor, with a plate area 1.2×10−3 cm2 and an air-filled separation of...
The parallel-plates in a capacitor, with a plate area 1.2×10−3 cm2 and an air-filled separation of 10 mm, are charged by a 12 V battery. They are then disconnected from the battery and pushed together (without discharge) to a separation of 3.5 mm. (a) Find the initial potential difference between the plates and the initial stored energy. (6 points) (b) Find the final potential difference between the plates and the final stored energy. (6 points) (c) How much work is...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 2.00 mm. (a) If a 16.0 V potential difference is applied to these plates, calculate the electric field between the plates. kv/m (b) What is the surface charge density? nC/m2 (c) What is the capacitance? pF (d) Find the charge on each plate. pC
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT