Question

In: Chemistry

Consider the following cell reaction: Fe(s) + 2 H+(? M) Fe2+(1.00 M) + H2(g)(1.00 atm) If...

Consider the following cell reaction: Fe(s) + 2 H+(? M) Fe2+(1.00 M) + H2(g)(1.00 atm) If the cell potential at 298 K is 0.236 volts, what is the pH of the hydrogen electrode?

A voltaic cell is constructed in which the cathode is a standard hydrogen electrode and the anode is a hydrogen electrode ()= 1atm) immersed in a solution of unknown [H+]. If the cell potential is 0.202 V, what is the pH of the unknown solution at 298 K? pH =

A voltaic cell is constructed in which the cathode is a standard hydrogen electrode and the anode is a hydrogen electrode ()= 1atm) immersed in a solution of unknown [H+]. If the cell potential is 0.184 V, what is the pH of the unknown solution at 298 K?

Thank you!

Solutions

Expert Solution


Related Solutions

Consider the reaction Fe(s) + 2HCl(aq)FeCl2(s) + H2(g) for which H° = -7.400 kJ and S°...
Consider the reaction Fe(s) + 2HCl(aq)FeCl2(s) + H2(g) for which H° = -7.400 kJ and S° = 107.9 J/K at 298.15 K. (1) Calculate the entropy change of the UNIVERSE when 2.097 moles of Fe(s) react under standard conditions at 298.15 K. Suniverse =  J/K (2) Is this reaction reactant or product favored under standard conditions? _________reactantproduct (3) If the reaction is product favored, is it enthalpy favored, entropy favored, or favored by both enthalpy and entropy? If the reaction is...
Consider an electrochemical cell based on the following overall reaction, Fe(s) + 2Ag+(aq)  Fe2+(aq) +...
Consider an electrochemical cell based on the following overall reaction, Fe(s) + 2Ag+(aq)  Fe2+(aq) + 2Ag(s) Fe2+(aq) + 2e– Fe(s), ℰ° = –0.44 V Ag+(aq) + e– Ag, ℰ° = 0.80 V Calculate the cell potential (in V) for this reaction at 25oC when the concentration of Ag+ ions is 0.050 M and the concentration of Fe2+ ions is 1.50 M. a. +1.32 V b. +1.50 V c. +1.20 V d. -1.32 V e. -1.20 V
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 89 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.110 M...
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 89 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.110 M . Part A: What is the value for the reaction quotient, Q, for the cell? Part B: What is the value for the temperature, T, in kelvins? Part C: What is the value for n? Part D: Calculate the standard cell potential for Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s)
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 73 ∘C , where [Fe2+]= 3.70 M and [Mg2+]= 0.310 M...
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 73 ∘C , where [Fe2+]= 3.70 M and [Mg2+]= 0.310 M . What is the value for the reaction quotient, Q, for the cell? What is the value for the temperature, T, in kelvins? What is the value for n? Calculate the standard cell potential for Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s)
Consider the reaction: Zn(s) + 2 H+(aq) = Zn2+(aq) + H2(g) At 25C, calculate: a) ∆G˚...
Consider the reaction: Zn(s) + 2 H+(aq) = Zn2+(aq) + H2(g) At 25C, calculate: a) ∆G˚ for the reaction, given that: ∆Gf Zn(s) = 0, ∆Gf(H+) = 0, ∆Gf(H2) = 0, ∆Gf(Zn2+) = -147.1 kj/mol b) ∆G, when P(h2) = 750 mmHg, [Zn2+ aq] = 0.10 M, [H+] = 1.0 x 10^-4 M c) The pH when ∆G - -100 kJ, P(h2) = 0.922 atm, [Zn2+] = 0.200 M and the mass of Zn is 155 g.
Derive a balanced equation for the reaction occurring in the cell: Fe(s)|Fe2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s) a.) If E?cell =...
Derive a balanced equation for the reaction occurring in the cell: Fe(s)|Fe2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s) a.) If E?cell = 1.21 V, calculate ?G? for the reaction. b.) If E?cell=1.21V, calculate the equilibrium constant for the reaction. c.) Use the Nernst equation to determine the potential for the cell: Fe(s)|Fe2+(aq,1.0�10-3M)||Fe3+(aq,1.0�10-3M),Fe2+(aq,0.10M)|Pt(s)
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2...
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2 reacts with 2.000 M of I2 at a temperature of 441°C. The value of Kc = 67. Determine the equilibrium concentrations of H2, I2, and HI.
a) Calculate the cell potential at 25°C for the cell Fe(s) I (Fe2+ (0.100 M) II...
a) Calculate the cell potential at 25°C for the cell Fe(s) I (Fe2+ (0.100 M) II Pd2+ (1.0 × 10-5 M) I Pd(s) given that the standard reduction potential for Fe2+/Fe is -0.45 V and for Pd2+/Pd is +0.95 V. - Please show the steps b) Based on the half-reactions and their respective standard reduction potentials below, the strongest reducing agent is ________, and the strongest oxidizing agent is ________.       Ag+ (aq) + e- → Ag(s)            0.80 V            ...
Calculate the cell emf for the following reaction at 25°C: 2Ag+(0.010 M) + H2(1 atm) ?...
Calculate the cell emf for the following reaction at 25°C: 2Ag+(0.010 M) + H2(1 atm) ? 2Ag(s) + 2H+(pH = 8.00)
Suppose you construct the following galvanic cell: Fe(s)|Fe2+(aq)||NAD+(aq)|NADH(aq) Fe2+ + 2e- → Fe Eo = -0.44V...
Suppose you construct the following galvanic cell: Fe(s)|Fe2+(aq)||NAD+(aq)|NADH(aq) Fe2+ + 2e- → Fe Eo = -0.44V NAD+ + 2e- + 2H+ → NADH + H+ Eo' = -0.320V (note the different standard states) A) Will the cell generate current at biochemical standard state? At chemical standard state? At T = 4 oC, pH = 7? At T = 97 oC, pH = 7? Justify your answers. B) How many protons can be moved across a membrane from pH 7.5 to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT