In: Chemistry
Derive a balanced equation for the reaction occurring in the
cell:
Fe(s)|Fe2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s)
a.) If E?cell = 1.21 V, calculate ?G? for the reaction.
b.) If E?cell=1.21V, calculate the equilibrium constant for the reaction.
c.) Use the Nernst equation to determine the potential for the
cell:
Fe(s)|Fe2+(aq,1.0�10-3M)||Fe3+(aq,1.0�10-3M),Fe2+(aq,0.10M)|Pt(s)
LHS Fe(S) Fe2+ + 2e (Oxidation)
RHS 2(Fe3+ + e Fe2+ ) (Reduction)
To balance charge multiply the reduction reaction by 2 and the add the two equations
The balanced equation for the cell reaction is
Fe(s) + 2 Fe3+3 Fe++
a) ? G0 = - nFE
n, the number of electrons involved in the redox reaction = 2
F is the Faraday = 96500 Coulombs
V = 1.21 V
? G = - 2 x 96500 Coulombs x 1.21 Volt= 233,530 volt coulombs
1 volt coulomb = 1 Joule
Therefore ?G = - 233,530 J = - 233.530 kJ
b) - ? G0 = RT ln K
ln K = - ? G0/ RT
ln K = 2.303 log K
Therefore
log K = - ?G0/2.303RT
R , the gas constant = 8.314J K-1mol-1
T ,the temperatue is not given .Let us assume a value of 298K
log K = -(- 233,530)J/ 2.303 x 8.314 J K-1mol-1 x 298 K
= 40.9281
K = anti log of 40.9281
K = 8.47 x 1040
C) LHs Fe(s) = Fe++ (1x 10-3M) +2e
RHS [Fe+++ ( 1x10-3) + e = Fe ++ (0.1M)}2
Adding Fe(s) +2Fe(1x10-3) = Fe++(1x10-3) + 2Fe++(0.1M)
NERNST EQUATION
E = E0- RT/nF ln [Fe++ 1x10-3][Fe++ 0.1]2/[Fe+++ 1x10-3]2
E = E0 - 0.0591/2 log [1x 10-3] [0.1]2 / [1x10-3]2 at 298 K
= 1.21 -0.02955x log10
=1.21 -0.02955x1
=1.043 V
=1,23955 V