Question

In: Statistics and Probability

Let Y1,...,Yn be a sample from the Uniform density on [0,2θ]. Show that θ = max(Y1,...

  1. Let Y1,...,Yn be a sample from the Uniform density on [0,2θ]. Show that θ =

    max(Y1, . . . , Yn) is a sufficient statistic for θ. Find a MVUE (Minimal Variance Unbiased Estimator) for θ.

Solutions

Expert Solution

please give a thumbs up if you like the solution


Related Solutions

Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on...
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on the interval (θ - 2, θ). a) Show that Ȳ is a biased estimator of θ. Calculate the bias. b) Calculate MSE( Ȳ). c) Find an unbiased estimator of θ. d) What is the mean square error of your unbiased estimator? e) Is your unbiased estimator a consistent estimator of θ?
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive...
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive the posterior density of θ given Y assuming the prior distribution of θ is Gamma(a,b) where a > 1. Then find the prior and posterior means and prior and posterior modes of θ.
Let Y1, ..., Yn be a random sample with the pdf: f(y;θ)= θ(1-y)^(θ-1) with θ>0 and...
Let Y1, ..., Yn be a random sample with the pdf: f(y;θ)= θ(1-y)^(θ-1) with θ>0 and 0<y<1. i) Obtain the minimum variance unbiased estimator ( for θ)
Construct a two-sided (1−α)-CI for θ in Uniform[0,θ] based on IID Y1,...,Yn
Construct a two-sided (1−α)-CI for θ in Uniform[0,θ] based on IID Y1,...,Yn
Suppose that Y1 ,Y2 ,...,Yn is a random sample from distribution Uniform[0,2]. Let Y(n) and Y(1)...
Suppose that Y1 ,Y2 ,...,Yn is a random sample from distribution Uniform[0,2]. Let Y(n) and Y(1) be the order statistics. (a) Find E(Y(1)) (b) Find the density of (Y(n) − 1)2 (c) Find the density of Y(n) − Y (1)
Let Y1, Y2, ..., Yn be a random sample from an exponential distribution with mean theta....
Let Y1, Y2, ..., Yn be a random sample from an exponential distribution with mean theta. We would like to test H0: theta = 3 against Ha: theta = 5 based on this random sample. (a) Find the form of the most powerful rejection region. (b) Suppose n = 12. Find the MP rejection region of level 0.1. (c) Is the rejection region in (b) the uniformly most powerful rejection region of level 0.1 for testing H0: theta = 3...
. Let Xl' ... ' Xn rv Uniform(0,θ) and let θˆ = max{Xl , ... ,...
. Let Xl' ... ' Xn rv Uniform(0,θ) and let θˆ = max{Xl , ... , Xn}. Find the bias, se, and MSE of this estimator. + If we assume that θˆ is asymptotically normal, what is the 90% percentile confidence interval? Suppose my data was 1.0 2.0 3.0 4.0 5.0 and report some numbers.
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for...
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for any α ∈ (0, 1), there is a cn,α, such that [max(X1,...,Xn),cn,α max(X1,...,Xn)] is a 1−α confidence interval of θ.
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 =...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 = X¯ − 1 2 and ˆθ2 = X(n) − n n + 1 are both consistent estimators for θ.
1. . Let X1, . . . , Xn, Y1, . . . , Yn be...
1. . Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent random variables, and Z = 1 n Pn i=1 XiYi . Suppose for each i ∈ {1, . . . , n}, Xi ∼ Bernoulli(p), Yi ∼ Binomial(n, p). What is Var[Z]? 2. There is a fair coin and a biased coin that flips heads with probability 1/4. You randomly pick one of the coins and flip it until you get a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT