Question

In: Advanced Math

Assume G is an Abelian group of order 144 and G contains at least 5 elements...

Assume G is an Abelian group of order 144 and G contains at least 5 elements of order 72. (a) Determine the possible structures of G (i.e., write it as a direct product of cyclic groups). If there are more than one structures, list them all. (b) For each isomorphic class of G, how many elements of order 12 does it have?

Solutions

Expert Solution

​​​​​​​upvote


Related Solutions

if order of a= order of b in a finite Abelian group , is order of...
if order of a= order of b in a finite Abelian group , is order of ab= order of a?
prove that a group of order 9 is abelian
prove that a group of order 9 is abelian
Prove that an abelian group G of order 2000 is the direct product PxQ where P...
Prove that an abelian group G of order 2000 is the direct product PxQ where P is the Sylow-2 subgroup of G, and Q the Sylow-5 subgroup of G. (So order of P=16 and order or Q=125).
abstract algebra Let G be a finite abelian group of order n Prove that if d...
abstract algebra Let G be a finite abelian group of order n Prove that if d is a positive divisor of n, then G has a subgroup of order d.
Let G be an abelian group and K is a subset of G. if K is...
Let G be an abelian group and K is a subset of G. if K is a subgroup of G , show that G is finitely generated if and only if both K and G/K are finitely generated.
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is...
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is the direct product of U and V (where V a subgroup of G) if only if there is a homomorphism f : G → U with    f|U = IdU
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd},...
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd}, prove that H is a subgroup of G. (b) If K = {x ∈ G| |x| = 1 or is even}, must K be a subgroup of G? (Give a proof or counterexample.)
(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be...
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be a prime such that p divides the order of G then G has an element of order p. Problem 2.1. Prove this theorem.
***PLEASE SHOW ALL STEPS WITH EXPLANATIONS*** Let G be a group (not necessarily an Abelian group)...
***PLEASE SHOW ALL STEPS WITH EXPLANATIONS*** Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT