Question

In: Math

abstract algebra Let G be a finite abelian group of order n Prove that if d...

abstract algebra

Let G be a finite abelian group of order n

Prove that if d is a positive divisor of n, then G has a subgroup of order d.

Solutions

Expert Solution


Related Solutions

Abstract Algebra Let G be a group of order 351. Prove that G is not simple.
Abstract Algebra Let G be a group of order 351. Prove that G is not simple.
Abstract Algebra Let G be a discrete group of isometries of R2. Prove there is a...
Abstract Algebra Let G be a discrete group of isometries of R2. Prove there is a point p ∈ R2 whose stabilizer is trivial.
Let G be an abelian group and n a fixed positive integer. Prove that the following...
Let G be an abelian group and n a fixed positive integer. Prove that the following sets are subgroups of G. (a) P(G, n) = {gn | g ∈ G}. (b) T(G, n) = {g ∈ G | gn = 1}. (c) Compute P(G, 2) and T(G, 2) if G = C8 × C2. (d) Prove that T(G, 2) is not a subgroup of G = Dn for n ≥ 3 (i.e the statement above is false when G is...
(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is...
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is the direct product of U and V (where V a subgroup of G) if only if there is a homomorphism f : G → U with    f|U = IdU
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be...
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be a prime such that p divides the order of G then G has an element of order p. Problem 2.1. Prove this theorem.
if order of a= order of b in a finite Abelian group , is order of...
if order of a= order of b in a finite Abelian group , is order of ab= order of a?
Let a be an element of a finite group G. The order of a is the...
Let a be an element of a finite group G. The order of a is the least power k such that ak = e. Find the orders of following elements in S5 a. (1 2 3 ) b. (1 3 2 4) c. (2 3) (1 4) d. (1 2) (3 5 4)
prove that a group of order 9 is abelian
prove that a group of order 9 is abelian
Prove that an abelian group G of order 2000 is the direct product PxQ where P...
Prove that an abelian group G of order 2000 is the direct product PxQ where P is the Sylow-2 subgroup of G, and Q the Sylow-5 subgroup of G. (So order of P=16 and order or Q=125).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT