Question

In: Statistics and Probability

a)Suppose random variable X has variance 1, Y has variance 4 and the variance of X...

a)Suppose random variable X has variance 1, Y has variance 4 and the variance of X + Y is 6. Which one of the statements below is correct? Group of answer choices Random variables X and Y are positively correlated Random variables X and Y are not correlated Random variables X and Y are negatively correlated Random variables X and Y are independent

b)Suppose random variable X has variance 4, Y has variance 1 and the variance of X + Y is 5. Which one of the statements below is correct? Group of answer choices Random variables X and Y are positively correlated Random variables X and Y are independent. Random variables X and Y are negatively correlated Random variables X and Y are not correlated

Solutions

Expert Solution

Please leave a comment if there is any doubt.

Leave an up vote if you like the solution..!!!

note: a correlation of zero doesnt imply that the variables are independent


Related Solutions

Suppose X is a discrete random variable with mean μ and variance σ^2. Let Y =...
Suppose X is a discrete random variable with mean μ and variance σ^2. Let Y = X + 1. (a) Derive E(Y ). (b) Derive V ar(Y ).
A random variable X is normally distributed with a mean of 1 and variance 4. Find...
A random variable X is normally distributed with a mean of 1 and variance 4. Find a) The probability that a randomly selected score from this distribution is less than 3. a.)Sketch a normal curve and shade out the region. b) The probability that a score selected at random from this distribution lies between 2 and 5. Sketch a normal curve and shade out the region c) The probability that a score selected at random from this distribution is greater...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always...
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always the positive root.) What is the P[X>=E[X]] ? What is the E[Y] ? what is the P[Y>=E[Y]]? what is the PFD of fY(y)?
Suppose X is an exponential random variable with mean 5 and Y is an exponential random...
Suppose X is an exponential random variable with mean 5 and Y is an exponential random variable with mean 10. X and Y are independent. Determine the coefficient of variation of X + Y
Let X, Y, and Z independent random variables with variance 4 and mean 1. Find the...
Let X, Y, and Z independent random variables with variance 4 and mean 1. Find the correlation coefficient between (X-2YX+1) and (4X+Y)
Exercise: Variance of the uniform Suppose that the random variable X takes values in the set...
Exercise: Variance of the uniform Suppose that the random variable X takes values in the set {0,2,4,6,…,2n} (the even integers between 0 and 2n, inclusive), with each value having the same probability. What is the variance of X? Hint: Consider the random variable Y=X/2 and recall that the variance of a uniform random variable on the set {0,1,…,n} is equal to n(n+2)/12. Var(X)=
Calculate the variance of random variable X if P(X = a) = p= 1 -P(X =...
Calculate the variance of random variable X if P(X = a) = p= 1 -P(X = b).
1. Let X be a random variable with mean μ and variance σ . For a...
1. Let X be a random variable with mean μ and variance σ . For a ∈ R, consider the expectation E ((X − a)2) a) Write E((X −a)2) in terms of a,μ and σ2 b) For which value a is E ((X − a)2) minimal? c) For the value a from part (b), what is E ((X − a)2)? 2. Suppose I have a group containing the following first- and second-year university students from various countries. The first 3...
2. Let X be a normal random variance with media 1 and variance 4. Consider a...
2. Let X be a normal random variance with media 1 and variance 4. Consider a new variance A random variable T defined below: T = -1 if X < -2 T = 0 if - 2 ≤ X ≤ 0 T = 1 if x>0 Find the moment generating function of T and, from it, calculate E (T) and Var (T).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT