Question

In: Statistics and Probability

A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...

A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5

Solutions

Expert Solution

Answer:-

Given That:-

A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5

Given that the pdf for X as

Let FY is the respective distribution function for Y and fY, is the corresponding pdf for Y.

Here, we can see that Y = X2 is not one-to-one function, For this, we need to find f, using generic method.

As we know,

[Y is the random variable, y is the realized value for Y]

i.e,

Therefore, using the relationship between pdf and its distribution function

We can have

i.e,

....................................(II)

Using the pdf of X in (II) we can have

Plz like it....,


Related Solutions

1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a...
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a probability. fX(2) is a set. It can only take values between 0 and 1 as input. fX(2) is a number. 2) Let X be a continuous random variable. What is true about FX(x)FX(x)? FX(x) is a strictly increasing function. It decreases to zero as x→∞x→∞. FX(2) is a probability. FX(x) can be any real number.
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
The probability density function of the random variable X is given by fX(x) = ax +...
The probability density function of the random variable X is given by fX(x) = ax + 2/9 if 1/2 ≤ x ≤ 3, and 0 otherwise. (a) Compute the value of a. (b) Let the random variable Y be defined as Y = [X], where [·] is the “round down” operator (that is, for example, [2.5] = 2, [−2.5] = −3, [−3] = −3). Find the probability mass function of Y . (Hint: For Y to take value k, what...
. Let X and Y be a random variables with the joint probability density function fX,Y...
. Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { 1, 0 < x, y < 1 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y ..
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x|...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x| for all values of x, where c is a constant. Find the value of c and the cumulative distribution function of X.
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ {...
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ { c.(4-x2), 0≤x≤2 0, otherwise where c is a constant. (a) Sketch fX (x) and find the constant c. (b) Find P (X > 1). (c) Suppose that somebody tells you {X > 1} occurred. Find the conditional pdf fX|{X>1}(x), the pdf of X given that {X > 1}. (d) Find FX(x), the cumulative distribution function of X. (e) Let Y = X2 . Find...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always...
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always the positive root.) What is the P[X>=E[X]] ? What is the E[Y] ? what is the P[Y>=E[Y]]? what is the PFD of fY(y)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT