Question

In: Statistics and Probability

Consider the standard normal curve, where μ=0 and σ=1. Find the value z so that 90%...

Consider the standard normal curve, where μ=0 and σ=1.

Find the value z so that 90% of the area under the curve is between −z and z . Give your answer to 4 decimal places.

Solutions

Expert Solution

Solution:

We have to find the value of z so that 90% area under the curve is between -z to z.

That is find

P(-z<Z<z)=90%

That is find

P(-z<Z<z)=0.90

Area between -z to z is 0.90, then area in two tails is

=1-0.90=0.10

Thus area in left tail =0.10/2=0.05

Thus find z value for left tail area=0.05

Use following steps in TI 84 plus calculator

Press 2ND and Press VARS

Select invNorm

Enter numbers

Thus z value=-1.6449

Thus absolute z value=1.6449

Thus required answer is 1.6449


Related Solutions

Find the value of z so that the area under the standard normal curve from 0...
Find the value of z so that the area under the standard normal curve from 0 to z is 0.4904 and z is negative.
1. Consider a standard normal random variable with μ = 0 and standard deviation σ =...
1. Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)    P(z < 2) = (b)    P(z > 1.16) = (c)    P(−2.31 < z < 2.31) = (d)    P(z < 1.82) = 2. Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.) (a)    P(−1.49 < z < 0.65) = (b)    P(0.56 < z < 1.74) = (c)    P(−1.54 < z < −0.46) = (d)    P(z...
1. Consider a standard normal random variable with μ = 0 and standard deviation σ =...
1. Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)    P(z < 2) = (b)    P(z > 1.16) = (c)    P(−2.31 < z < 2.31) = (d)    P(z < 1.82) = 2. Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.) (a)    P(−1.49 < z < 0.65) = (b)    P(0.56 < z < 1.74) = (c)    P(−1.54 < z < −0.46) = (d)    P(z...
Consider a standard normal random variable with μ = 0 and standard deviation σ = 1....
Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)     P(z < 2) = (b)     P(z > 1.13) = (c)     P(−2.39 < z < 2.39) = (d)     P(z < 1.88) =
Assume a normal distribution with μ = 0 and σ = 1, find the z-score(s) for...
Assume a normal distribution with μ = 0 and σ = 1, find the z-score(s) for each statement below: a) the area is 0.4 to the left of z b) the area is 0.18 to the right of z c) the middle area is 0.31 between −z and z __________________________ The heights of a certain population of corn plants follow a distribution with a mean of 137 cm and a standard deviation 23.19 cm. Find the raw scores for the...
For the following use a standard normal curve. That is a μ of zero and σ...
For the following use a standard normal curve. That is a μ of zero and σ of 1. 1. What is the probability that z < 1.5? 2. What is the probability that z >2? 3. What is the probability that -2<z<2? 4. What z score represents the top 5%? 5. What z score represents the bottom 10%? 6. What z scores represent the middle? 90%? 7. What z scores represent the middle 95%? 8. What z scores represent the...
Find the area under the standard normal distribution curve: a) Between z = 0 and z...
Find the area under the standard normal distribution curve: a) Between z = 0 and z = 1.95 b) To the right of z = 1.99 c) To the left of z = -2.09 How would I do this?
Find the area under the standard normal distribution curve: a) Between z = 0 and z...
Find the area under the standard normal distribution curve: a) Between z = 0 and z = 1.95 b) To the right of z = 1.99 c) To the left of z = -2.09 How would I do this?
Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z...
Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z < -1.88) b) P(Z > 1.51) = c) P(-0.61 < Z < 1.54) = d) P(| Z | >1.78) = e)  P(Z < -1.27) = f) P(Z > 1.02) = g) P(-0.69 < Z < 1.78) = h) P(| Z | >1.86) =
Find the value of the standard normal random variable z , called z 0 such that:...
Find the value of the standard normal random variable z , called z 0 such that: a)  ?(?≤?0)=0.8998 ?0= (b)  ?(−?0≤?≤?0)=0.676 ?0= (c)  ?(−?0≤?≤?0)=0.198 ?0= (d)  ?(?≥?0)=0.1895 ?0= (e)  ?(−?0≤?≤0)=0.4425 ?0= (f)  ?(−1.11≤?≤?0)=0.8515 ?0=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT