In: Math
Convert the system
3x1 +13x2 - 14x3 = -14
x1 + 4x2 -5x3 = -4
-7x1 - 25x2 +39x3 = 20
to an augmented matrix. Then reduce the system to echelon form and determine if the system is consistent. If the system in consistent, then find all solutions.
Augmented matrix:
Echelon form:
Is the system consistent?
Solution (x1,x2,x3) =



augmented matrix is
| 3 | 13 | -14 | -14 | 
| 1 | 4 | -5 | -4 | 
| -7 | -25 | 39 | 20 | 
convert into Reduced Row Eschelon Form...
Divide row1 by 3
| 1 | 13/3 | -14/3 | -14/3 | 
| 1 | 4 | -5 | -4 | 
| -7 | -25 | 39 | 20 | 
Add (-1 * row1) to row2
| 1 | 13/3 | -14/3 | -14/3 | 
| 0 | -1/3 | -1/3 | 2/3 | 
| -7 | -25 | 39 | 20 | 
Add (7 * row1) to row3
| 1 | 13/3 | -14/3 | -14/3 | 
| 0 | -1/3 | -1/3 | 2/3 | 
| 0 | 16/3 | 19/3 | -38/3 | 
Divide row2 by -1/3
| 1 | 13/3 | -14/3 | -14/3 | 
| 0 | 1 | 1 | -2 | 
| 0 | 16/3 | 19/3 | -38/3 | 
Add (-16/3 * row2) to row3
| 1 | 13/3 | -14/3 | -14/3 | 
| 0 | 1 | 1 | -2 | 
| 0 | 0 | 1 | -2 | 
Add (-1 * row3) to row2
| 1 | 13/3 | -14/3 | -14/3 | 
| 0 | 1 | 0 | 0 | 
| 0 | 0 | 1 | -2 | 
Add (14/3 * row3) to row1
| 1 | 13/3 | 0 | -14 | 
| 0 | 1 | 0 | 0 | 
| 0 | 0 | 1 | -2 | 
Add (-13/3 * row2) to row1
| 1 | 0 | 0 | -14 | 
| 0 | 1 | 0 | 0 | 
| 0 | 0 | 1 | -2 | 
here for every column there is one pivot entry so system is consistent
so unique solution is
