In: Math
Convert the system
3x1 +13x2 - 14x3 = -14
x1 + 4x2 -5x3 = -4
-7x1 - 25x2 +39x3 = 20
to an augmented matrix. Then reduce the system to echelon form and determine if the system is consistent. If the system in consistent, then find all solutions.
Augmented matrix:
Echelon form:
Is the system consistent?
Solution (x1,x2,x3) =
augmented matrix is
3 | 13 | -14 | -14 |
1 | 4 | -5 | -4 |
-7 | -25 | 39 | 20 |
convert into Reduced Row Eschelon Form...
Divide row1 by 3
1 | 13/3 | -14/3 | -14/3 |
1 | 4 | -5 | -4 |
-7 | -25 | 39 | 20 |
Add (-1 * row1) to row2
1 | 13/3 | -14/3 | -14/3 |
0 | -1/3 | -1/3 | 2/3 |
-7 | -25 | 39 | 20 |
Add (7 * row1) to row3
1 | 13/3 | -14/3 | -14/3 |
0 | -1/3 | -1/3 | 2/3 |
0 | 16/3 | 19/3 | -38/3 |
Divide row2 by -1/3
1 | 13/3 | -14/3 | -14/3 |
0 | 1 | 1 | -2 |
0 | 16/3 | 19/3 | -38/3 |
Add (-16/3 * row2) to row3
1 | 13/3 | -14/3 | -14/3 |
0 | 1 | 1 | -2 |
0 | 0 | 1 | -2 |
Add (-1 * row3) to row2
1 | 13/3 | -14/3 | -14/3 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | -2 |
Add (14/3 * row3) to row1
1 | 13/3 | 0 | -14 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | -2 |
Add (-13/3 * row2) to row1
1 | 0 | 0 | -14 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | -2 |
here for every column there is one pivot entry so system is consistent
so unique solution is