Question

In: Advanced Math

Consider the following linear optimization model. Z = 3x1+ 6x2+ 2x3 st       3x1 +4x2 + x3...

Consider the following linear optimization model.

Z = 3x1+ 6x2+ 2x3

st       3x1 +4x2 + x3 ≤2

           x1+ 3x2+ 2x3 ≤ 1

      X1, x2, x3 ≥0

               (10) Write the optimization problem in standard form with the consideration of slack variables.

               (30) Solve the problem using simplex tableau method.

               (10) State the optimal solution for all variables.

Solutions

Expert Solution


Related Solutions

Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to X1 + X2 < 7 // Resource 1 –X1 + 3X2 < 3 // Resource 2 X1, X2 > 0 X1, X2 are integer i. Consider using the Branch and Bound (B & B) technique to solve the ILP model. With the help of Tora software, draw the B & B tree. Always give priority for X1 in branching over X2. Clearly label the...
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:      ...
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:       10x1 + 4x2 ≤ 60                   25x1 + 50x2 ≤ 200                   x1, x2 ≥ 0 Find the optimal profit and the values of x1 and x2 at the optimal solution.
1.   Solve the following system: 2x1- 6x2- x3 = -38 -3x1–x2 +7x3 = -34 -8x1 +x2...
1.   Solve the following system: 2x1- 6x2- x3 = -38 -3x1–x2 +7x3 = -34 -8x1 +x2 – 2x3 = -20 By: a.   LU Factorization b.   Gauss-Siedel Method, error less that10-4 Hint (pivoting is needed, switch rows).
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3 ? 430 (Operation 1) 3x1 + 2x3 ? 460 (Operation 2) x1 + 4x2 ? 420 (Opeartion 3 ) x1, x2, x3 ?0 Optimal tableau is given below: basic x1 x2 x3 x4 x5 x6 solution z 4 0 0 1 2 0 1350 x2 -1/4 1 0 1/2 -1/4 0 100 x3 3/2 0 1 0 1/2 0 230 x6 2 0 0...
Consider the following functions. g(x) =x3 − 10x h(x)=4x2 + 3x f(x)=(x3 − 10x)(4x2 + 3x)...
Consider the following functions. g(x) =x3 − 10x h(x)=4x2 + 3x f(x)=(x3 − 10x)(4x2 + 3x) Find the derivative of each function. g '(x)= h '(x)= f '(x)=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT