Question

In: Math

For the linear system x1+3x2=2 3x1+hx2=k Find values for h and k such that the system...

For the linear system x1+3x2=2 3x1+hx2=k

Find values for h and k such that the system has:

a) no solution

b) a unique solution

c) infinitely many solutions

Solutions

Expert Solution

Solution:

By

If , the rank of   is    and the rank of is .

   The system will be inconsistent and will have no solution.

The system has a unique solution if the coefficient matrix is non-singular

If , the coefficient matrix and the augmented matrix become

The rank of   is    and the rank of    will also be   if

If       and   , the system is consistent . But the rank of is less than the number of unknown . Hence , will have infinite solutions.


Related Solutions

Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:      ...
Consider the following linear programming problem: Max Z =          3x1 + 3x2 Subject to:       10x1 + 4x2 ≤ 60                   25x1 + 50x2 ≤ 200                   x1, x2 ≥ 0 Find the optimal profit and the values of x1 and x2 at the optimal solution.
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3...
[6.4] Solve the following linear program by a graphical method: Maximize 3x1 + 3x2 + 21x3 subject to 6x1 + 9x2 + 25x3 <= 15 3x1 + 2x2 + 25x3 <= 20 x1 , x2 , x3 >= 0 (Hint: utilize the dual problem.)    
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
Find the general solution of the linear system x ̇1 = x1, x ̇2 = ax2...
Find the general solution of the linear system x ̇1 = x1, x ̇2 = ax2 Where a is a constant. Draw the phase planes for a = −1, 0, 1. Comment on the changes of the phase plane
consider the linear programming problem maximize z = x1 +x2 subjected tp x1 + 3x2 >=...
consider the linear programming problem maximize z = x1 +x2 subjected tp x1 + 3x2 >= 15 2x1 + x2 >= 10 x1 + 2x2 <=40 3x1 + x2 <= 60 x1 >= 0, x2>= 0 solve using the revised simplex method and comment on any special charateristics of the optimal soultion. sketch the feasible region for the problem as stated above and show on the figure the solutions at the various iterations
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 –...
Consider the following linear program. Maximize z= 5x1+ 3x2 subject to 3x1+ 5x2≤15 5x1+ 2x2≤10 – x1+ x2≤2 x2≤2.5 x1≥0, x2≥0 a. Show the equality form of the model. b. Sketch the graph of the feasible region and identify the extreme point solutions. From this representation find the optimal solution. c. Analytically determine all solutions that derive from the intersection of two constraints or nonnegativity restrictions. Identify whether or not these solutions are feasible, and indicate the corresponding objective function...
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1...
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1 − 3x2 + 2x3 = -3   x1 − 6x2 + 3x3 = -6 b) -2b + 2c = 10 3a + 12b -3c = -6 6a + 18b + 0c = 19 c) 4x - 1y + 4z + 3t = 5 1x - 4z + 6t = 7 5x - 5y + 1z + 2t = -5 4x + 1y + 3z +...
Consider the following quadratic forms q(x1, x2) = 3x1^2 − 6x1x2 + 11x2^2 and r(x1, x2,...
Consider the following quadratic forms q(x1, x2) = 3x1^2 − 6x1x2 + 11x2^2 and r(x1, x2, x3) = x1^2 − x2^2+x3^2+ 2x1x2 − 6x1x3+2x2x3, on R 2 and R 3 , respectively. In both cases do the following. (a) Find the symmetric matrix A representing the quadratic form. (b) Find a corresponding orthogonal matrix P of eigenvectors of that matrix. (c) Write down the maximum and minimum values of the quadratic form over the unit vectors (in R 2 and...
Convert the system 3x1 +13x2 - 14x3 = -14 x1 + 4x2 -5x3 = -4 -7x1...
Convert the system 3x1 +13x2 - 14x3 = -14 x1 + 4x2 -5x3 = -4 -7x1 - 25x2 +39x3 = 20 to an augmented matrix. Then reduce the system to echelon form and determine if the system is consistent. If the system in consistent, then find all solutions. Augmented matrix: Echelon form: Is the system consistent? Solution (x1,x2,x3) =
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT