In: Accounting
A loan of $10,000 is to be repaid with 10 semi-annual payments. The first payment is X in 6 months time. i(2) = 4%. Find X if
a) Payments increase by $100 every 6 months.
b) Payments increase by 10% every 6 months.
a.. Equating the PV to the semi-annual cash flows | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10000=(x/1.04^1)+((x+100)/1.04^2)+((x+200)/1.04^3)+((x+300)/1.04^4)+((x+400)/1.04^5)+((x+500)/1.04^6)+((x+600)/1.04^7)+((x+700)/1.04^8)+((x+800)/1.04^9)+((x+900)/1.04^10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solving the above in an online calculator, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
we get X= | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
815.18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
b...Using Pv of growing annuity formula, |
PV(GA)=(X/(r-g))*(1-((1+g)/(1+r))^n) |
10000=(X/(0.04-0.1))*(1-(1.1/1.04)^10) |
797.618 |
ie. X= 798 |
Amortisation table | ||||
No. | Semi-annual payments | Tow. Int.(4%) | Tow.Principal | Prin. Bal. |
10000 | ||||
1 | 797.62 | 400.00 | 397.62 | 9602.38 |
2 | 877.38 | 384.10 | 493.28 | 9109.10 |
3 | 965.12 | 364.36 | 600.75 | 8508.34 |
4 | 1061.63 | 340.33 | 721.30 | 7787.05 |
5 | 1167.79 | 311.48 | 856.31 | 6930.74 |
6 | 1284.57 | 277.23 | 1007.34 | 5923.39 |
7 | 1413.03 | 236.94 | 1176.09 | 4747.30 |
8 | 1554.33 | 189.89 | 1364.44 | 3382.86 |
9 | 1709.77 | 135.31 | 1574.45 | 1808.41 |
10 | 1880.74 | 72.34 | 1808.41 | 0.01 |
12711.98 | 2711.98 | 9999.99 |