Question

In: Math

Let V be the set of all ordered triples of real numbers. For u = (u1,...

Let V be the set of all ordered triples of real numbers. For u = (u1, u2, u3) and v = (v1, v2, v3), we define the following operations of addition and scalar multiplication on V :

u + v = (u1 + v1, u2 + v2 − 1, u3 + v3 − 2) and ku = (ku1, ku2, ku3).

For example, if u = (1, 0, 3), v = (2, 1, 1), and k = 2 then

u + v = (1 + 2, 0 + 1 − 1, 3 + 1 − 2) = (3, 0, 2) and 2u = (2 · 1, 2 · 0, 2 · 3) = (2, 0, 6).

Complete the following:

(a) Calculate (1, 1, 1) + (2, 2, 2).

(b) Show that (0, 0, 0) 6= 0.

(c) What is 0?

(d) State a vector space axiom that fails to hold. Give an example to justify your claim.

Solutions

Expert Solution


Related Solutions

Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). Show that V is not a vector space. • u ⊕ v = (u1 + v1 + 1, u2 + v2 + 1 ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the...
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and...
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and addition on S by: α(x1,x2)=(αx1,αx2) (x1,x2)⊕(y1,y2)=(x1 +y1,0) We use the symbol⊕to denote the addition operation for this system in order to avoid confusion with the usual addition x+y of row vectors. Show that S, together with the ordinary scalar multiplication and the addition operation⊕, is not a vector space. Test ALL of the eight axioms and report which axioms fail to hold.
Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that...
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that X consists of 8 elements and that a metric d on X can be defined by ∀x,y ∈ X: d(x,y) := Number of places where x and y have different entries. 2: Show that the non-negativity of a metric can be deduced from only Axioms (M2), (M3), and (M4). 3: Let (X,d) be a metric space. Show that another metric D on X can...
Let V = R4 and let U = hu1, u2i, where u1 =   ...
Let V = R4 and let U = hu1, u2i, where u1 =    1 2 0 −3    , u2 =     1 −1 1 0    . 1. Determine dimU and dimV/U. 2. Let v1 =    1 0 0 −3    , v2 =     1 2 0 0    , v3 =     1 3...
Suppose A is the set of positive real numbers, and suppose u and v are two...
Suppose A is the set of positive real numbers, and suppose u and v are two strictly increasing functions.1 It is intuitive that u and v are ordinally equivalent, since both rank larger numbers higher, and therefore generate the same ranking of numbers. Write this intuition as a proof.
Let A be a set of real numbers. We say that A is an open set...
Let A be a set of real numbers. We say that A is an open set if for every x0 ∈ A there is some δ > 0 (which might depend on x0) such that (x0 − δ, x0 + δ) ⊆ A. Show that a set B of real numbers is closed if and only if B is the complement of some open set A
Let A = {a1,...,an} be a set of real numbers such that ai >= 1 for...
Let A = {a1,...,an} be a set of real numbers such that ai >= 1 for all i, and let I be an open interval of length 1. Use Sperner’s Theorem to prove an upper bound for the number of subsets of A whose elements sum to a number inside the interval I.
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT