In: Statistics and Probability
The state test scores for 12 randomly selected high school seniors are shown on the right. Complete parts (a) through (c) below.
Assume the population is normally distributed.
12 scores-
|
1) find the sample mean
2) find the standard deviation
3) construct a 90% confidence interval for the population mean
Solution :
Given that,
x | x2 |
143 | 20449 |
1220 | 1488400 |
985 | 970225 |
694 | 481636 |
729 | 531441 |
837 | 700569 |
724 | 524176 |
750 | 562500 |
544 | 295936 |
621 | 385641 |
1443 | 2082249 |
949 | 900601 |
∑x=9639 | ∑x2=8943823 |
Mean ˉx=∑xn
=143+1220+985+694+729+837+724+750+544+621+1443+949/12
=9639/12
=803.25
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√8943823-(9639)212/11
=√8943823-7742526.75/11
=√1201296.25/11
=√109208.75
=330.4675
Degrees of freedom = df = n - 1 = 12 - 1 = 11
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
t /2,df = t0.05,11=1.796
Margin of error = E = t/2,df * (s /n)
= 1.796 * (330.47 / 12 )
=171.32
Margin of error = 171.32
The 90% confidence interval estimate of the population mean is,
- E < < + E
803.25 - 171.32 < < 803.25 + 171.32
631.92 < < 974.57
(631.92, 974.57 )