Question

In: Physics

(a) Compute the first-order correction to all energy eigenvalues of a particle in a square well...

(a) Compute the first-order correction to all energy eigenvalues of a particle in a square well in the region 0 ≤ ? ≤ L with added potential: ?(?) = ?o? when 0 ≤ ? ≤ L/2 and ?o (L − ?) when L/2 ≤ ? ≤ L.

(b) Using the given potential, use the variational theorem to compute an upper bound to the ground state using the trial function below

∅(?) = ?1 (2/L)1/2 sin ( ??/L ) + ?2 (2/L)1/2 sin ( 2??/L )

Solutions

Expert Solution

please check all the calculations.


Related Solutions

A particle in an infinite one-dimensional square well is in the ground state with an energy...
A particle in an infinite one-dimensional square well is in the ground state with an energy of 2.23 eV. a) If the particle is an electron, what is the size of the box? b) How much energy must be added to the particle to reach the 3rd excited state (n = 4)? c) If the particle is a proton, what is the size of the box? d) For a proton, how does your answer b) change?
Find the energy spectrum of a particle in the infinite square well, with potential U(x) →...
Find the energy spectrum of a particle in the infinite square well, with potential U(x) → ∞ for |x| > L and U(x) = αδ(x) for |x| < L. Demonstrate that in the limit α ≫ hbar^2/mL, the low energy part of the spectrum consists of a set of closely-positioned pairs of energy levels for α > 0. What is the structure of energy spectrum for α < 0?
Consider a particle in an infinite square well, but instead of having the well from 0...
Consider a particle in an infinite square well, but instead of having the well from 0 to L as we have done in the past, it is now centered at 0 and the walls are at x = −L/2 and x = L/2. (a) Draw the first four energy eigenstates of this well. (b) Write the eigenfunctions for each of these eigenstates. (c) What are the energy eigenvalues for this system? (d) Can you find a general expression for the...
A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies...
A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies of the next two levels. Also indicate the degeneracy of the levels.
Consider a particle of mass ? in an infinite square well of width ?. Its wave...
Consider a particle of mass ? in an infinite square well of width ?. Its wave function at time t = 0 is a superposition of the third and fourth energy eigenstates as follows: ? (?, 0) = ? 3i?­3(?)+ ?­4(?) (Find A by normalizing ?(?, 0).) (Find ?(?, ?).) Find energy expectation value, <E> at time ? = 0. You should not need to evaluate any integrals. Is <E> time dependent? Use qualitative reasoning to justify. If you measure...
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
Find the second order correction in energy for a hydrogen atom Which Is subject to electric...
Find the second order correction in energy for a hydrogen atom Which Is subject to electric field of (Eo) in z axis,
A particle in the infinite square well (width a) starts out being equally likely to be...
A particle in the infinite square well (width a) starts out being equally likely to be found in the first and last third of the well and zero in the middle third. What is the initial (t=0) wave function? Find A and graph the initial wave function. What is the expectation value of x? Show your calculation for the expectation value of x, but then say why you could have just written down the answer. Will you ever find the...
Derive the general wavefunction for a particle in a box (i.e. the infinite square well potential)....
Derive the general wavefunction for a particle in a box (i.e. the infinite square well potential). Go on to normalise it. What energy/energies must the particle have to exist in this box?
It is well known that the Lagrangian of a classical free particle equal to kinetic energy....
It is well known that the Lagrangian of a classical free particle equal to kinetic energy. This statement can be derived from some basic assumptions about the symmetries of the space-time. Is there any similar reasoning (eg. symmetry based or geometrical) why the Lagrangian of a classical system is equal kinetic energy minus the potential energy? Or it is just because we can compare the Newton's equations with the Euler-Lagrange equation and realize how they can match?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT