Question

In: Physics

Consider a particle of mass ? in an infinite square well of width ?. Its wave...

Consider a particle of mass ? in an infinite square well of width ?. Its

wave function at time t = 0 is a superposition of the third and fourth energy

eigenstates as follows:

? (?, 0) = ? 3i?­3(?)+ ?­4(?)

(Find A by normalizing ?(?, 0).)

(Find ?(?, ?).)

Find energy expectation value, <E> at time ? = 0. You should not need to evaluate any integrals.

Is <E> time dependent? Use qualitative reasoning to justify.

If you measure E at time ?, what values are possible and what are their probabilities?

Please answer all parts of the question, show all work, write legibly, and explain your reasoning! :)

Solutions

Expert Solution


Related Solutions

A particle in the infinite square well (width a) starts out being equally likely to be...
A particle in the infinite square well (width a) starts out being equally likely to be found in the first and last third of the well and zero in the middle third. What is the initial (t=0) wave function? Find A and graph the initial wave function. What is the expectation value of x? Show your calculation for the expectation value of x, but then say why you could have just written down the answer. Will you ever find the...
Consider a particle in an infinite square well, but instead of having the well from 0...
Consider a particle in an infinite square well, but instead of having the well from 0 to L as we have done in the past, it is now centered at 0 and the walls are at x = −L/2 and x = L/2. (a) Draw the first four energy eigenstates of this well. (b) Write the eigenfunctions for each of these eigenstates. (c) What are the energy eigenvalues for this system? (d) Can you find a general expression for the...
For the infinite square-well potential, find the probability that a particle in its second excited state...
For the infinite square-well potential, find the probability that a particle in its second excited state is in each third of the one-dimensional box: 0?x?L/3 L/3?x?2L/3 2L/3?x?L There's already an answer on the site saying that the wavefunction is equal to ?(2/L)sin(2?x/L). My professor gave us this equation, but also gave us the equation as wavefunction = Asin(kx)+Bcos(kx), for specific use when solving an infinite potential well. How do I know which equation to use and when? Thanks
For the infinite square-well potential, find the probability that a particle in its fifth excited state...
For the infinite square-well potential, find the probability that a particle in its fifth excited state is in each third of the one-dimensional box: ----------------(0 ≤ x ≤ L/3) ----------------(L/3 ≤ x ≤ 2L/3) ------------------(2L/3 ≤ x ≤ L)
Show how the wave function of the even states of a particle in an infinite well...
Show how the wave function of the even states of a particle in an infinite well extending from x=-L/2 to x=L/2 evolve in time. Details!
A particle in an infinite one-dimensional square well is in the ground state with an energy...
A particle in an infinite one-dimensional square well is in the ground state with an energy of 2.23 eV. a) If the particle is an electron, what is the size of the box? b) How much energy must be added to the particle to reach the 3rd excited state (n = 4)? c) If the particle is a proton, what is the size of the box? d) For a proton, how does your answer b) change?
Find the energy spectrum of a particle in the infinite square well, with potential U(x) →...
Find the energy spectrum of a particle in the infinite square well, with potential U(x) → ∞ for |x| > L and U(x) = αδ(x) for |x| < L. Demonstrate that in the limit α ≫ hbar^2/mL, the low energy part of the spectrum consists of a set of closely-positioned pairs of energy levels for α > 0. What is the structure of energy spectrum for α < 0?
1.Normalize the wave function for a particle in infinite potential well? 2.What is the Tunnel effect?...
1.Normalize the wave function for a particle in infinite potential well? 2.What is the Tunnel effect? Calculate depth of penetration in a potential barrier-Which attenuation is to be used as standard for this calculation?
A particle of mass m is confined to a finite potential energy well of width L....
A particle of mass m is confined to a finite potential energy well of width L. The equations describing the potential are U=U0 x<0 U=0 0 < x < L U=U0 x > L Take a solution to the time-independent Schrodinger equation of energy E (E < U0) to have the form A exp(-k1 x) + B exp(k1 x) x < 0 C cos(-k2 x) + D sin(k2 x) 0 < x < L F exp(-k3 x) + G exp(k3...
particle of mass m, which moves freely inside an infinite potential well of length a, is...
particle of mass m, which moves freely inside an infinite potential well of length a, is initially in the state Ψ(x, 0) = r 3 5a sin(3πx/a) + 1 √ 5a sin(5πx/a). (a) Normalize Ψ(x, 0). (b) Find Ψ(x, t). (c) By using the result in (b) calculate < p2 >. (d) Calculate the average energy
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT