Question

In: Physics

An oscillator consists of a block attached to a spring (k = 490 N/m). At some...

An oscillator consists of a block attached to a spring (k = 490 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.107 m, v = -16.6 m/s, and a = -103 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.

Solutions

Expert Solution


Related Solutions

A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k =...
A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k = 190 N/m). The block slides on a horizontal frictionless surface about the equilibrium point x = 0 with a total mechanical energy of 6.0 J. (a) What is the amplitude of the oscillation? (b) How many oscillations does the block complete in 12 s? (c) What is the maximum kinetic energy attained by the block? (d) What is the speed of the block at...
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass =...
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass = 0.5kg; the block is oscillating back and forth and its initial position (i.e. when t = 0 sec) is when the spring is compressed to a maximum amount of 1.25 m: a) In 10 seconds how many times does the block oscillate back and forth? b) What are the maximum kinetic energy and the maximum velocity of the block? c) Where is the block...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103 N/m. At time t = 1.40 s, the position and the velocity of the block are x = 0.150 m and v = 3.18 m/s respectively. What is the amplitude of oscillation? What was the position of the block at t = 0? What was the speed of the block at t = 0?
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 260 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.199 m and v = 3.920 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring of spring constant 120 N/m. When t = 0.84 s, the position and velocity of the block are x = 0.127 m and v = 3.23 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A frictionless oscillator is composed of a 350 N/m spring and a block of mass m....
A frictionless oscillator is composed of a 350 N/m spring and a block of mass m. It is set into motion such that at time t = 0, the block is at equilibrium (x 0 = 0) and is moving in the positive x-direction at 16 cm/s. It oscillates at angular frequency ω = 4.4 s − 1. a) Determine the mass of the block. b) Determine the energy of the oscillation. c)Determine the amplitude of the oscillation. d) Determine...
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with...
A 0.900-kg block attached to a spring with force constant k = 1.20 N/m oscillates with an amplitude equal to half its natural length. The natural (un-stretched) length of the spring is 18.0 cm. (a) When submitting your work, sketch the figure below illustrating the position, and directly underneath that, the velocity of the mass as a function of time. Assume that x = 9.00 cm and v =0 m/s when t = 0.00 s. Label the amplitude A and...
A vertical spring with k = 490 N/m is standing on the ground. You are holding...
A vertical spring with k = 490 N/m is standing on the ground. You are holding a 5.8 kg block just above the spring, not quite touching it. (a) How far does the spring compress if you let go of the block suddenly? m (b) How far does the spring compress if you slowly lower the block to the point where you can remove your hand without disturbing it? 0.116 m is the answer I got and know how to...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally...
1. A block of mass m attached to a spring with spring constant k oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x = -5 cm. Taking m = 100 gm, and spring constant = 2.5 N/m, a) Find out the equations of position, velocity, and acceleration of the ball. Find also the total energy of the block when its velocity was 20 cm/s. b) Oscillating particles generate waves. What will be the equation of a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT