In: Computer Science
I have 3 grammars
A -
S→ a T ∣ S b ∣ ϵ
T→ Sb ∣ b
B -
S→ ϵ ∣ aSb ∣ aSbb
C-
S→T ∣ a S b b
T→ ϵ ∣ a T b
Find me the sublanguage relation
e.g [(A,A) ,(B,B),(C,C), ...... ]
Solutions :
Note : ^ is used as power in expressions .
A) 
S -> aT | Sb | ϵ
T -> sb | b 
The strings  generated by the above grammar  are : 
str={ ϵ, b , b^2,b^3 ,_ _ _ _, __,
      ab , ab^2 , ab^3 < _ _ _ _ ,  _ _ ,
      a^2b^2 , a^3b^3, a^4b^4 , _ _ _ _ ,  
      a^2b^3,a^2b^4, _ _ _ _ , __ } 
we can conclude that 
L(G) = {a^m b^n , n>=m  }   
B) 
 S→ ϵ ∣ aSb ∣ aSbb
Strings genrated by the given grammer can be 
str={ϵ , ab , a^2b^2 , a^3b^3 ,_ _ _ _ _ _ _ _ _ ,a^2b^3 , a^2b^4 , a^3b^4 a^3b^5 ,a^3b^6 , a^4b^5,
     a^4b^6,a4^b^7 _ _ _ _ _ } 
from observation it can concluded that , 
Genrated grammer can be : 
L(G) ={a^m b^n , m<=n<=2*m } 
This grammar  generates all the strings such that n lies between m and 2 * m as shown in above grammer.
C) 
S→T ∣ a S b b
T→ ϵ ∣ a T b
Strings generated by the above grammar as follows : 
str={ϵ , ab , a^2b^2, a^3b^3 , _ _ _ _ _ _ _ , _ _  
      ab^2,a^2b^4 , a^3b^6 ,_ _ _ _ _ _ _ _ , _ _ 
       a^2b^3 , a^3b^4 , a^4b^5,_ _ _ _ __ , _ _ } 
from above set of stirngs we can conclude that 
L(G) = { a^m b^n , m=n or n=2*m or n=m+1 except when m=0 }