Question

In: Advanced Math

Let V = { S, A, B, a, b, λ} and T = { a, b...

  1. Let V = { S, A, B, a, b, λ} and T = { a, b }, Find the languages generated by the grammar G = ( V, T, S, P } when the set of productions consists of:
    1. S → AB, A → aba, B → bab.
    2. S → AB, S → bA, A → bb, B → aa.
    3. S → AB, S → AA, A → Ab, A → a, B → b.
    4. S → A, S → B, A → abA, A → a, B → baB, B → b.
    5. S → AB, A → aBb, B → bAa, A → λ, B → λ.

Solutions

Expert Solution


Related Solutions

Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is...
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is an eigenvalue of p(T), then λ is an eigenvalue of T. Under the additional assumption that V is a complex vector space, and conclude that {μ | λ an eigenvalue of p(T)} = {p(λ) | λan eigenvalue of T}.
Let G = (V, E) be a directed graph, with source s ∈ V, sink t...
Let G = (V, E) be a directed graph, with source s ∈ V, sink t ∈ V, and nonnegative edge capacities {ce}. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut (i.e., an s-t of capacity strictly less than that of all other s-t cuts).
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S...
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S be in- vertible. Prove λ ∈ C is an eigenvalue of T if and only if λ is an eigenvalue of STS−1. Give a description of the set of eigenvectors of STS−1 associated to an eigenvalue λ in terms of the eigenvectors of T associated to λ. Show that there exist square matrices A, B that have the same eigenvalues, but aren’t similar. Hint:...
Let X ~ exp(λ) MGF of X = λ/(1-t) a) What is MGF of Y =...
Let X ~ exp(λ) MGF of X = λ/(1-t) a) What is MGF of Y = 3X b) Y has a common distribution, what is the pdf of Y? c) Let X1,X2,....Xk be independent and identically distributed with Xi ~ exp(λ) and S = Σ Xi (with i = 1 below the summation symbol, and k is on top of the summation symbol). What is the MGF of S? d) S has a common distribution. What is the pdf of...
Let L = {x = a r b s c t | r + s =...
Let L = {x = a r b s c t | r + s = t, r, s, t ≥ 0}. Give the simplest proof you can that L is not regular using the pumping lemma.
3.5.4 ([Ber14, Ex. 3.6.14]). Let T : V → W and S : W → U...
3.5.4 ([Ber14, Ex. 3.6.14]). Let T : V → W and S : W → U be linear maps, with V finite dimensional. (a) If S is injective, then Ker ST = Ker T and rank(ST) = rank(T). (b) If T is surjective, then Im ST = Im S and null(ST) − null(S) = dim V − dim W
Let T and S be linear transformations of a vector space V, and TS=ST (a) Show...
Let T and S be linear transformations of a vector space V, and TS=ST (a) Show that T preserves the generalized eigenspace and eigenspace of S. (b) Suppose V is a vector space on R and dimV = 4. S has a minimal polynomial of (t-2)2 (t-3)2?. What is the jordan canonical form of S. (c) Show that the characteristic polynomial of T has at most 2 distinct roots and splits completely.
Show that Cp = T(∂S/∂T)p and Cv = T(∂S/∂T)V
Show that Cp = T(∂S/∂T)p and Cv = T(∂S/∂T)V
1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s,...
1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s, t, u, v, w}, E = {v, w, x}, and F = {t, u}. Use roster notation to list the elements of D ∩ E. a. {v, w} b. {r, s, t, u, v, w, x, y, z} c. {s, t, u} d. {s, t, u, v, w, x, y, z} 2. Let U = {r, s, t, u, v, w, x, y, z},...
(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ...
(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively. (b) Let Λ = \ {λ ∈ R : λ > 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT