Question

In: Advanced Math

Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b...

Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b a−b 2a]

a) find the null space of T and a basis for it

(b) Is T one-to-one? Explain

(c) Determine if w = [−1 4 −6] is in the range of T

(d) Find a basis for the range of T and its dimension

(e) Is T onto? Explain

Solutions

Expert Solution


Related Solutions

Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x +2y +z, 2x +2y +3z +w, x +4y +2w) a) Find the dimension and basis for Im T (the image of T) b) Find the dimension and basis for Ker ( the Kernel of T) c) Does the vector v= (2,3,5) belong to Im T? Justify the answer. d) Does the vector v= (12,-3,-6,0) belong to Ker? Justify the answer.
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(?...
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(? + ?? + ??^2) = (? + ?) + (? − ?)x
. Let T : R n → R m be a linear transformation and A the...
. Let T : R n → R m be a linear transformation and A the standard matrix of T. (a) Let BN = {~v1, . . . , ~vr} be a basis for ker(T) (i.e. Null(A)). We extend BN to a basis for R n and denote it by B = {~v1, . . . , ~vr, ~ur+1, . . . , ~un}. Show the set BR = {T( r~u +1), . . . , T( ~un)} is a...
(8) Suppose T : R 4 → R 4 with T(x) = Ax is a linear...
(8) Suppose T : R 4 → R 4 with T(x) = Ax is a linear transformation such that • (0, 0, 1, 0) and (0, 0, 0, 1) lie in the kernel of T, and • all vectors of the form (x1, x2, 0, 0) are reflected about the line 2x1 − x2 = 0. (a) Compute all the eigenvalues of A and a basis of each eigenspace. (b) Is A invertible? Explain. (c) Is A diagonalizable? If yes,...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
Exercise 2.5.1 Suppose T : R n ? R n is a linear transformation. Prove that...
Exercise 2.5.1 Suppose T : R n ? R n is a linear transformation. Prove that T is an isometry if and only if T(v) · T(w) = v · w. Recall that an isometry is a bijection that preserves distance.
Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1)...
Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1) + p 0 (x) + 3x 2p 00(x). Let B be the basis {1, x, x2} for P2. (a) Find the matrix A for T with respect to the basis B. (b) Find the eigenvalues of A, and a basis for R 3 consisting of eigenvectors of A. (c) Find a basis for P2 consisting of eigenvectors for T.
Q2a) Consider a transformation T : R 2×2 → R 2×2 such that T(M) = MT...
Q2a) Consider a transformation T : R 2×2 → R 2×2 such that T(M) = MT . This is infact a linear transformation. Based on this, justify if the following statements are true or not. (2) a) T ◦ T is the identity transformation. b) The kernel of T is the zero matrix. c) Range T = R 2×2 d) T(M) =-M is impossible. b) Assume that you are given a matrix A = [aij ] ∈ R n×n with...
For problems 1-4 the linear transformation T/; R^n - R^m  is defined by T(v)=AV with A=[-1 -2...
For problems 1-4 the linear transformation T/; R^n - R^m  is defined by T(v)=AV with A=[-1 -2 -1 -1 2 1 0 -4 4 6 1 15] 1.   Find the dimensions of R^n and R^m (3 pts) 2.   Find T(<-2, 1, 4, -1>) (5 pts) 3.   Find the preimage of <-6, 12, 4> (8 pts) 4.   Find the Ker(T) (8 pts)
2. (Solving linear systems) Consider the linear system Ax = b with A =[14 9 14...
2. (Solving linear systems) Consider the linear system Ax = b with A =[14 9 14 6 -10;-11 -11 5 8 6;15 -2 -14 8 -15;14 13 11 -3 -7;0 9 13 5 -14], and . b = [-4;8;6;0;10]. a) Verify that the linear system has a unique solution. Hint: use rref, rank, det, or any other Matlab method. Briefly explain the answer please. You'll now solve Ax = b in three different ways. Store the three different solutions in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT