Question

In: Physics

In figure, a wheel of radius 0.30 m is mounted on a frictionless horizontal axle. A...

In figure, a wheel of radius 0.30 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 3.0 kg box that slides on a frictionless surface inclined at angle θ = 29° with the horizontal. The box accelerates down the surface at 1.9 m /s 2. What is the rotational inertia of the wheel about the axle? (Your answer must be in units of kg.m 2 and include 3 digit after the decimal point. Maximum of 5% of error is accepted in your answer. Take g=9.80 m /s 2.)

Solutions

Expert Solution

To find the rotational inertia I of the wheel first we have to calculate Tension in the cord and then using tension value calcualate rotational inertia of wheel upto 3 digits after decimal point.


Related Solutions

A stationary bicycle wheel of radius 0.8 m is mounted in the vertical plane (see figure below)
A stationary bicycle wheel of radius 0.8 m is mounted in the vertical plane (see figure below). The axle is held up by supports that are not shown, and the wheel is free to rotate on the nearly frictionless axle. The wheel has mass 4.2 kg, all concentrated in the rim (the spokes have negligible mass). A lump of clay with mass 0.5 kg falls and sticks to the outer edge of the wheel at the location shown. Just before...
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center (the figure (Figure 1)).
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center (the figure (Figure 1)). The linear speed of a passenger on the rim is constant and equal to 7.49 m/s1-What is the magnitude of the passenger's acceleration as she passes through the lowest point in her circular motion?2-What is the direction of the passenger's acceleration as she passes through the lowest point in her circular motion?3-What is the magnitude of the passenger's acceleration as...
A cylindrical 6.00-kg reel with a radius of 0.60 m and a frictionless axle, starts from...
A cylindrical 6.00-kg reel with a radius of 0.60 m and a frictionless axle, starts from rest and speeds up uniformly as a 4.00-kg bucket falls into a well, making a light rope unwind from the reel (Fig. P8.36). The bucket starts from rest and falls for 5.00s. (a) What is the linear acceleration of the falling bucket? (b) How far does it drop? (c) What is the angular acceleration of the reel?
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. What is the angular velocity (in rad/s) at the instant the disk has completed four revolutions. The disk starts from rest. Group of answer choices 3.78 rad/s 3.87 rad/s 2.35...
A wheel of radius r rolls to the right without slipping on a horizontal road. Its axle moves at a constant speed vaxle.
A wheel of radius r rolls to the right without slipping on a horizontal road. Its axle moves at a constant speed vaxle. (a) Find the velocities of points A, B, and C with respect to the axle. Express your answers in terms of vaxle and r, as needed. (b) Find the velocities of points A, B, and C with respect to the road. (c) Comment on the velocity of point C with respect to the road.
A horizontal circular platform (M=92.1kg, r=3.07m) rotates about a frictionless vertical axle. A student (m=92.3kg) walks...
A horizontal circular platform (M=92.1kg, r=3.07m) rotates about a frictionless vertical axle. A student (m=92.3kg) walks slowly from the rim of the platform toward the center. The angular velocity w of the system is 4.1rad/s when the student is at the rim. Find w when the student is 1.47m from the center. Use "rad/s" as units.
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a...
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20 kg puck that is initially moving along the x axis with a velocity of 2.4 m/s. After the collision, the 0.20 kg puck has a speed of 0.8 m/s at an angle of θ = 53° to the positive x axis. (a) Determine the velocity of the 0.30 kg puck after the collision. _ at _ ° from +x axis (b) This was...
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center,...
A Ferris wheel with radius 14.0 m is turning about a horizontal axis through its center, as shown in the figure below. The linear speed of a passenger on the rim is constant and equal to 6.30m/s. A) What is the magnitude of the passenger's acceleration as she passes through the lowest point in her circular motion? Express your answer in meters per second squared to three significant figures. B) What is the direction of the passenger's acceleration as she...
Consider the 12 kg motorcycle wheel shown in the figure. Assume it to be approximately a ring with an inner radius of 0.255 m and an outer radius of 0.32 m.
Consider the 12 kg motorcycle wheel shown in the figure. Assume it to be approximately a ring with an inner radius of 0.255 m and an outer radius of 0.32 m. The motorcycle is on its center stand, so that the wheel can spin freely.         33% Part (a) If the drive chain exerts a force of 2250 N at a radius of 4.8 cm, what is the angular acceleration of the wheel, in radians per square second?...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 9.0 m/s. After the collision, the 0.20-kg puck has a speed of 5.4 m/s at an angle of θ = 53° to the positive x-axis. a)Determine the velocity of the 0.30-kg puck after the collision. magnitude-? direction-? (from the positive X-axis) (b) Find the fraction of kinetic energy lost in the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT