Question

In: Physics

A cylindrical 6.00-kg reel with a radius of 0.60 m and a frictionless axle, starts from...

A cylindrical 6.00-kg reel with a radius of 0.60 m and a frictionless axle, starts from rest and speeds up uniformly as a 4.00-kg bucket falls into a well, making a light rope unwind from the reel (Fig. P8.36). The bucket starts from rest and falls for 5.00s. (a) What is the linear acceleration of the falling bucket? (b) How far does it drop? (c) What is the angular acceleration of the reel?

Solutions

Expert Solution

we use newton's second law and apply it to the bucket and the rotational form to the reely the forces on the bucket are the tension in the string and the weight of the bucket; the bucket accelerates down, so we have T - mg = -ma (eq. 1)(m is mass of bucket) the tension exerts a torque on the reel of magnitude TR where R is the radius of the reel; this torque causes an angular acceleration A, such that torque = I A the moment of inertia of a cylindrical disk is 1/2 MR^2 where M is the mass of the reel, so we have torque = T R = I A = 1/2 MR^2 A or T=1/2 MR A the angular acceleration is related to linear acceleration via a = RA, so we get T=1/2 MR(a/R)=1/2Ma use this in equation (1) to get T-mg=-ma 1/2Ma-mg=-ma a(1/2M +m)=g a=g/(1/2 M +m) using relevant values, we get: a=9.8m/s/s/(0.5x6.0 kg + 4.00kg) a=1.4m/s/s standard kinematics tells you distance fell = 1/2 at^2= 1/2(1.4m/s/s)(5s)^2 =15m angular accel = a/R=1.4m/s/s / 0.6m = 2.333rad/s/s


Related Solutions

In figure, a wheel of radius 0.30 m is mounted on a frictionless horizontal axle. A...
In figure, a wheel of radius 0.30 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 3.0 kg box that slides on a frictionless surface inclined at angle θ = 29° with the horizontal. The box accelerates down the surface at 1.9 m /s 2. What is the rotational inertia of the wheel about the axle? (Your answer must be in units of kg.m 2 and include 3 digit...
A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is...
A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.80 m high and 5.0 m long. When the cylinder reaches the bottom of the ramp, what is its total kinetic energy? When the cylinder reaches the bottom of the ramp, what is its rotational kinetic energy? When the cylinder reaches the bottom of the ramp,...
Blocks A (mass 4.00 kg ) and B (mass 6.00 kg ) move on a frictionless,...
Blocks A (mass 4.00 kg ) and B (mass 6.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 5.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. Find the maximum energy stored in the spring...
A uniform cylindrical turntable of radius 1.90 m and mass 28.2 kg rotates counterclockwise in a...
A uniform cylindrical turntable of radius 1.90 m and mass 28.2 kg rotates counterclockwise in a horizontal plane with an initial angular speed of 4π rad/s. The fixed turntable bearing is frictionless. A lump of clay of mass 2.49 kg and negligible size is dropped onto the turntable from a small distance above it and immediately sticks to the turntable at a point 1.80 m to the east of the axis. (a) Find the final angular speed of the clay...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. What is the angular velocity (in rad/s) at the instant the disk has completed four revolutions. The disk starts from rest. Group of answer choices 3.78 rad/s 3.87 rad/s 2.35...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest...
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest around its central axis with a constant angular acceleration. It takes 2 minutes for the cylindrical shell to make 30 revolutions. A) Find the magnitude of the net torque exerted on the cylindrical shell when the cylindrical shell made 30 revolutions from rest? B) Find the magnitude of the total linear acceleration when the cylindrical shell made 20 revolutions from rest. C) Find the...
A flywheel with a radius of 0.390 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.390 m starts from rest and accelerates with a constant angular acceleration of 0.670 rad/s2. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0 ∘. Compute the magnitude of the tangential acceleration, the radial...
A flywheel with a radius of 0.400 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.400 m starts from rest and accelerates with a constant angular acceleration of 0.640 rad/s2. A. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. Express your answers in meters per second squared separated by commas. B. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has...
A frictionless pulley has the shape of a uniform solid disk of mass 6.00 kg and...
A frictionless pulley has the shape of a uniform solid disk of mass 6.00 kg and radius 12.0 cm . A 3.60 kg stone is attached to a very light wire that is wrapped around the rim of the pulley(Figure 1), and the stone is released from rest. As it falls down, the wire unwinds without stretching or slipping, causing the pulley to rotate. How far must the stone fall so that the pulley has 7.50 J of kinetic energy?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT