Question

In: Advanced Math

Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx...

Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations

uxx + uyy = 0, −∞ < x < ∞ 0 < y < a,

u(x, 0) = f(x), u(x, a) = 0, −∞ < x < ∞

u(x, y) → 0 uniformlyiny as|x| → ∞.

Solutions

Expert Solution


Related Solutions

Use a Laplace Transform technique to find the solution to the differential equation (ie. initial value...
Use a Laplace Transform technique to find the solution to the differential equation (ie. initial value problem). y'' + 4y' + 5y = 35e^(-4t) y(0) = -3 y'(0) = 1
Use the Laplace transform to find the solution of the IVP: a.) 2y' + y =...
Use the Laplace transform to find the solution of the IVP: a.) 2y' + y = 1, y(0) = 2 (answer should be y(t) = 1 + e-t / 2 ) f.) 4y" + y = 0, y(0) = -1, y'(0) = -1 (answer should be y(t) = -sin(t) - cos(t)) Please show work!
Use the Laplace transform to find the solution y(t) to the IVP y′′+3y′+2y=2e−tt with initial condition...
Use the Laplace transform to find the solution y(t) to the IVP y′′+3y′+2y=2e−tt with initial condition y(0)=1,y′(0)=2
Use Laplace transform and inverse Laplace transform to solve the givien initial value problems (c) y′′...
Use Laplace transform and inverse Laplace transform to solve the givien initial value problems (c) y′′ −2y′ +2y=e−t, y(0)=0, y′(0)=1
3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of...
3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform Applications: a)))))) Series RL circuit with ac source [electronics]
4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of...
4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform Applications: a) Series RLC circuit with dc source b) Damped motion of an object in a fluid [mechanical, electromechanical] c) Forced Oscillations [mechanical, electromechanical] You should build the...
Solving Differential Equations using Laplace Transform
  Solving Differential Equations using Laplace Transform a) y" - y' -2y = 0 y(0) = 1, y'(0) = 0 answer: y = 1/3e^2t + 2/3e^-t b) y" + y = sin2t y(0) = 2, y'(0) = 1 answer: y(t) = 2cost + 5/3 sint - 1/3sin2t c) y^4 - y = 0 y(0) = 0, y'(0) = 1, y"(0) = 0, y'''(0) = 0 answer y(t) = (sinht + sint)/2
Use the Laplace transform to solve the following initial value problem, y′′ − y′ − 30y  ...
Use the Laplace transform to solve the following initial value problem, y′′ − y′ − 30y  =  δ(t − 7),y(0)  =  0,  y′(0)  =  0. The solution is of the form ?[g(t)] h(t). (a) Enter the function g(t) into the answer box below. (b) Enter the function h(t) into the answer box below.
1. Find the solution by using the Laplace transform. a) y ′′ + 2ty′ −4y =...
1. Find the solution by using the Laplace transform. a) y ′′ + 2ty′ −4y = 1 , y(0) = y ′ (0) = 0
Use Laplace transform method to solve the following initial value problems (a) d2y/dt2 + y =...
Use Laplace transform method to solve the following initial value problems (a) d2y/dt2 + y = e^ −t ; y(0) = 0, y′ (0) = 0. (b) d2y/dt2+ y = t subject to the initial conditions y(0) = 0, y′ (0) = 2 (c) dy/dt + 2y = 4e 3t subject to the initial condition y(0) = 1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT