Question

In: Advanced Math

Use the Laplace transform to find the solution of the IVP: a.) 2y' + y =...

Use the Laplace transform to find the solution of the IVP:

a.) 2y' + y = 1, y(0) = 2 (answer should be y(t) = 1 + e-t / 2 )

f.) 4y" + y = 0, y(0) = -1, y'(0) = -1 (answer should be y(t) = -sin(t) - cos(t))

Please show work!

Solutions

Expert Solution


Related Solutions

Use the Laplace transform to find the solution y(t) to the IVP y′′+3y′+2y=2e−tt with initial condition...
Use the Laplace transform to find the solution y(t) to the IVP y′′+3y′+2y=2e−tt with initial condition y(0)=1,y′(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Give the Laplace transform of the solution to y"+2y'+3y=0 y(0)=-5 y'(0)=4
Give the Laplace transform of the solution to y"+2y'+3y=0 y(0)=-5 y'(0)=4
1. Find the solution by using the Laplace transform. a) y ′′ + 2ty′ −4y =...
1. Find the solution by using the Laplace transform. a) y ′′ + 2ty′ −4y = 1 , y(0) = y ′ (0) = 0
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y =...
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y = 2sin2t; y(0) = 2, y'(0) = 4
Use the Laplace transform to solve the given initial value problem. y'' + 2y' + 10y...
Use the Laplace transform to solve the given initial value problem. y'' + 2y' + 10y = 6cos2t - 4sin2t, y(0)=2, y'(0)= -2
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT